Fixed point results for \((\beta ,\alpha )\)-implicit contractions in two generalized b-metric spaces
-
1409
Downloads
-
2806
Views
Authors
Gehad M. Abd-Elhamed
- Department of Mathematics, College of Girls, Ain Shams University, Egypt.
- College of Science and Humanities studies, Sattam Bin Abdul-Aziz University, Saudi Arabia.
Abstract
The aim of this paper is to introduce (\(\beta \),\(\alpha )\)-implicit
contractive of two mappings on two generalized b-metric spaces and derive
some new fixed point theorems for (\(\beta \),\(\alpha )\)-implicit contractive
in two complete and compact generalized b-Metric spaces.
Share and Cite
ISRP Style
Gehad M. Abd-Elhamed, Fixed point results for \((\beta ,\alpha )\)-implicit contractions in two generalized b-metric spaces, Journal of Nonlinear Sciences and Applications, 14 (2021), no. 1, 39--47
AMA Style
Abd-Elhamed Gehad M., Fixed point results for \((\beta ,\alpha )\)-implicit contractions in two generalized b-metric spaces. J. Nonlinear Sci. Appl. (2021); 14(1):39--47
Chicago/Turabian Style
Abd-Elhamed, Gehad M.. "Fixed point results for \((\beta ,\alpha )\)-implicit contractions in two generalized b-metric spaces." Journal of Nonlinear Sciences and Applications, 14, no. 1 (2021): 39--47
Keywords
- Fixed points
- (\(\beta \),\(\alpha )\)-implicit contractions
- generalized b-metric spaces
MSC
References
-
[1]
M. Abbas, B. E. Rhoades, Common fixed point results for non-commuting mappings without continuity in generalized metric spaces, Appl. Math. Comput., 215 (2009), 262--269
-
[2]
G. M. Abd-Elhamed, Fixed point theorems for contractions and generalized contractions in $G$-metric spaces, J. Interpolat. Approx. Sci. Comput., 2015 (2015), 20--27
-
[3]
G. M. Abd-Elhamed, Related fixed point theorems on two complete and compact G-metric spaces, Int. J. Eng. Res. Tech., 12 (2019), 446--456
-
[4]
R. P. Agarwal, Z. Kadelburg, S. Radenović, On coupled fixed point results in asymmetric $G$-metric spaces, J. Inequal. Appl., 2013 (2013), 12 pages
-
[5]
A. Aghajani, M. Abbas, J. R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered $G_{b}$-metric spaces, Filomat, 28 (2014), 1087--1101
-
[6]
A. Amini-Harandi, Fixed point theory for quasi-contraction maps in $b$-metric spaces, Fixed Point Theory, 15 (2014), 351--358
-
[7]
H. Aydi, W. Shatanawi, C. Vetro, On generalized weakly $g$-contraction mapping in $g$-metric spaces, Comput. Math. Appl., 62 (2011), 4222--4229
-
[8]
S. Czerwik, Nonlinear set-valued contraction mappings in $b$-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263--276
-
[9]
N. Hussain, C. Vetro, F. Vetro, Fixed point results for $\alpha$-implicit contractions with application to integral equations, Nonlinear Anal. Model. Control, 21 (2016), 362--378
-
[10]
Z. Mustafa, V. Parvaneh, M. Abbas, J. R. Roshan, Some coincidence point results for generalized $(\psi, \phi)$-weakly contractive mappings in ordered $G$-metric spaces, Fixed Point Theory Appl., 2013 (2013), 23 pages
-
[11]
Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289--297
-
[12]
H. K. Nashine, Z. Kadelburg, Cyclic generalized $\phi$-contractions in $b$-metric spaces and an application to integral equations, Filomat, 28 (2014), 2047--2057
-
[13]
V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau, 7 (1997), 129--133
-
[14]
V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math., 32 (1999), 157--163
-
[15]
V. Popa, A.-M. Patriciu, A general fixed point theorem for mappings satisfying an implicit relation in complete $G$-metric spaces, Gazi Univ. J. Sci., 25 (2012), 403--408
-
[16]
V. Popa, A.-M. Patriciu, A general fixed point theorem for pairs of weakly compatible mappings in $G$-metric spaces, J. Nonlinear Sci. Appl., 5 (2012), 151--160
-
[17]
V. Popa, A.-M. Patriciu, Two general fixed point theorems for pairs of weakly compatible mappings in $G$-metric spaces, Novi Sad J. Math., 42 (2012), 49--60
-
[18]
V. Popa, A.-M. Patriciu, Fixed point theorems for mappings satisfying an implicit relation in complete $G$-metric spaces, Bul. Inst. Politeh. Iasi, Sect. I, Mat. Mec. Teor. Fiz., 59 (2013), 97--123
-
[19]
S. Radenović, T. Došenović, T. A. Lampert, Z. Golubovíć, A note on some recent fixed point results for cyclic contractions in $b$-metric spaces and an application to integral equations, Appl. Math. Comput., 273 (2016), 155--164