The extended Burr XII distribution: properties and applications
    
        
            
                Volume 13, Issue 3, pp 133--146
            
                        
                http://dx.doi.org/10.22436/jnsa.013.03.02
            
            
                                    
            
            
                
                    Publication Date: November 13, 2019
                
                                
                    Submission Date: June 26, 2019
                
                
                                
                    Revision Date: August 06, 2019
                
                
                                Accteptance Date: August 26, 2019
                            
                                 
        
            
            
                
                    
                        - 
                            2387
                            Downloads
                        
- 
                            5308
                            Views
                        
 
                
             
         
     
    
    
    Authors
    
                Ahmed Z.  Afify
                
        
                                        - Department of Statistics, Mathematics and Insurance, Benha University, Egypt.
                                        Ashraf D.  Abdellatif
                
        
                                        - Department of Technological Management and Information, Higher Technological Institute, 10th of Ramadan, Egypt.
                                    
        
    Abstract
    This paper introduces a new four-parameter lifetime model called the
Marshall-Olkin generalized Burr XII (MOGBXII) distribution. We derive some
of its mathematical properties, including quantile and generating functions,
ordinary and incomplete moments, mean residual life, and mean waiting time
and order statistics. The MOGBXII density can be expressed as a linear
mixture of Burr XII densities. The maximum likelihood and least squares
methods are used to estimate the MOGBXII parameters. Simulation results are
obtained to compare the performances of the two estimation methods for both
small and large samples. We empirically illustrate the flexibility and importance of the MOGBXII distribution in modeling various types of lifetime data.
 
    
    
    Share and Cite
    
        
        
            ISRP Style
                                                                                    Ahmed Z.  Afify, Ashraf D.  Abdellatif, The extended Burr XII distribution: properties and applications, Journal of Nonlinear Sciences and Applications, 13 (2020), no. 3, 133--146
         
        
            AMA Style
                                                                                    Afify Ahmed Z., Abdellatif Ashraf D., The extended Burr XII distribution: properties and applications. J. Nonlinear Sci. Appl. (2020); 13(3):133--146
         
        
        
            Chicago/Turabian Style
                                                                                    Afify, Ahmed Z., Abdellatif, Ashraf D.. "The extended Burr XII distribution: properties and applications." Journal of Nonlinear Sciences and Applications, 13, no. 3 (2020): 133--146
         
     
            
    Keywords
    
                -  Burr XII
-  least squares
-  maximum likelihood
-  mean residual life
-  moments
-  order statistics
    MSC
    
    
        
    References
        
                - 
            [1]
            
                                T. H. M. Abouelmagd, S. Al-mualim, A. Z. Afify, M. Ahmad, H. Al-Mofleh, The odd Lindley Burr XII distribution with applications, Pakistan J. Statist., 34 (2018), 15--32
                            
            
        
                - 
            [2]
            
                                T. H. M. Abouelmagd, M. S. Hamed, A. Z. Afify, The extended Burr XII distribution with variable shapes for the hazard rate, Pak. J. Stat. Oper. Res., 13 (2017), 687--698
                            
            
        
                - 
            [3]
            
                                A. Z. Afify, G. M. Cordeiro, M. Bourguignon, E. M. Ortega, Properties of the transmuted Burr XII distribution, regression and its applications, J. Data Sci., 16 (2018), 485--510
                            
            
        
                - 
            [4]
            
                                A. Z. Afify, G. M. Cordeiro, E. M. M. Ortega, H. M. Yousof,  N. S. Butt, The four-parameter Burr XII distribution: properties, regression model, and applications, Comm. Statist. Theory Methods, 47 (2018), 2605--2624
                            
            
        
                - 
            [5]
            
                                A. Z. Afify, G. M. Cordeiro, H. M. Yousof, A. Saboor, E. M. M. Ortega, The Marshall-Olkin additive Weibull distribution with variable shapes for the hazard rate, Hacet. J. Math. Stat., 47 (2018), 365--381
                            
            
        
                - 
            [6]
            
                                A. Z. Afify, A. K. Suzuki, C. Zhang, M. Nassar, On threeparameter exponential distribution: properties, Bayesian and non-Bayesian estimation based on complete and censored samples, Commun. Stat. Simul. Comput., 2019 (2019), 21 pages
                            
            
        
                - 
            [7]
            
                                M. A. D. Aldahlan, A. Z. Afify, The odd exponentiated half-logistic Burr XII distribution, Pak. J. Stat. Oper. Res., 14 (2018), 305--317
                            
            
        
                - 
            [8]
            
                                A. Y. Al-Saiari, L. A. Baharith, S. A. Mousa, Marshall--Olkin extended Burr Type XII distribution, Int. J. Statist. Prob., 3 (2014), 78--84
                            
            
        
                - 
            [9]
            
                                I. W. Burr, Cumulative frequency functions, Ann. Math. Statistics, 13 (1942), 215--232
                            
            
        
                - 
            [10]
            
                                G. M. Cordeiro, A. Z. Afify, H. M. Yousof, R. R. Pescim, G. R. Aryal, The exponentiated Weibull-H family of distributions: theory and applications, Mediterr. J. Math., 14 (2017), 22 pages
                            
            
        
                - 
            [11]
            
                                A. E. Gomes, C. Q. da-Silva, G. M. Cordeiro, Two extended Burr models: Theory and practice, Comm. Statist. Theory Methods, 44 (2015), 1706--1734
                            
            
        
                - 
            [12]
            
                                I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Academic Press, San Diego (2000)
                            
            
        
                - 
            [13]
            
                                R. C. Gupta, P. L. Gupta, R. D. Gupta, Modeling failure time data by Lehmann alternatives, Comm. Statist. Theory Methods, 27 (1998), 887--904
                            
            
        
                - 
            [14]
            
                                C.-D. Lai, M. Xie, Stochastic Ageing and Dependence for Reliability, Springer, Berlin (2006)
                            
            
        
                - 
            [15]
            
                                E. T. Lee, J. W. Wang, Statistical methods for survival data analysis, Wiley-Interscience, Hoboken (2003)
                            
            
        
                - 
            [16]
            
                                M. M. Mansour, E. M. Abd Elrazik, A. Z. Afify, M. Ahsanullah, E. Altun, The transmuted transmuted-G family: properties and applications, J. Nonlinear Sci. Appl., 12 (2019), 217--229
                            
            
        
                - 
            [17]
            
                                A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, 84 (1997), 641--652
                            
            
        
                - 
            [18]
            
                                M. E. Mead, A new generalization of Burr XII distribution, J. Stat. Adv. Theory Appl., 12 (2014), 53--73
                            
            
        
                - 
            [19]
            
                                M. E. Mead, A. Z. Afify, On five parameter Burr XII distribution: properties and applications, South African Statist. J., 51 (2017), 67--80
                            
            
        
                - 
            [20]
            
                                P. F. Paranaíba, E. M. M. Ortega, G. M. Cordeiro, M. A. R. de Pascoa, The Kumaraswamy Burr XII distribution: theory and practice, J. Stat. Comput. Simul., 83 (2013), 2117--2143
                            
            
        
                - 
            [21]
            
                                P. F. Paranaíba, E. M. M. Ortega, G. M. Cordeiro, R. R. Pescim, The beta Burr XII distribution with application to lifetime data, Comput. Statist. Data Anal., 55 (2011), 1118--1136
                            
            
        
                - 
            [22]
            
                                A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and Series, Vol. 4, Gordon and Breach Science Publishers, New York (1992)
                            
            
        
                - 
            [23]
            
                                Q. Shao, Notes on maximum likelihood estimation for the threeparameter Burr XII distribution, Comput. Stat. Data Anal., 45 (2004), 675--687
                            
            
        
                - 
            [24]
            
                                P. R. Tadikamalla, A look at the Burr and related distributions, Internat. Statist. Rev., 48 (1980), 337--344
                            
            
        
                - 
            [25]
            
                                H. M. Yousof, A. Z. Afify, S. Nadarajah, G. Hamedani, G. R. Aryal, The Marshall-Olkin generalized-G family of distributions with applications, Statistica, 78 (2018), 273--295