On the local convergence of Gargantini-Farmer-Loizou method for simultaneous approximation of multiple polynomial zeros
    
        
        
            
            
                
                    
                        - 
                            2591
                            Downloads
                        
- 
                            5613
                            Views
                        
 
                
             
         
     
    
    
    Authors
    
                Petko D.  Proinov
                
        
                                        - Faculty of Mathematics and Informatics, University of Plovdiv Paisii Hilendarski, 24 Tzar Asen, 4000 Plovdiv, Bulgaria.
                                    
        
    Abstract
    The paper deals with a well known iterative method for simultaneous computation of all zeros (of known multiplicities) of a polynomial 
with coefficients in a valued field.
This method was independently introduced by Farmer and Loizou [M. R. Farmer, G. Loizou,
Math. Proc. Cambridge Philos. Soc., \({\bf 82}\) (1977), 427--437] and Gargantini [I. Gargantini,
SIAM J. Numer. Anal., \({\bf 15}\) (1978), 497--510].
If all zeros of the polynomial are simple, the method coincides with the famous Ehrlich's method [L. W. Ehrlich,
Commun. ACM, \({\bf 10}\) (1967), 107--108].
We provide two types of local convergence results for the Gargantini-Farmer-Loizou method.
The first main result improves the results of [N. V. Kyurkchiev, A. Andreev, V. Popov, Ann. Univ. Sofia Fac. Math. Mech., \({\bf 78}\) (1984), 178--185] and  [A. I. Iliev, C. R. Acad. Bulg. Sci., \({\bf 49}\) (1996), 23--26] for this method. 
Both main results of the paper generalize the results of Proinov  [P. D. Proinov, Calcolo, \({\bf 53}\) (2016), 413--426]  for Ehrlich's method. 
The results in the present paper are obtained by applying a new approach for convergence analysis of Picard type iterative methods 
in finite-dimensional vector spaces. 
    
    
    Share and Cite
    
        
        
            ISRP Style
                                                            Petko D.  Proinov, On the local convergence of Gargantini-Farmer-Loizou method for simultaneous approximation of multiple polynomial zeros, Journal of Nonlinear Sciences and Applications, 11 (2018), no. 9, 1045--1055
         
        
            AMA Style
                                                            Proinov Petko D., On the local convergence of Gargantini-Farmer-Loizou method for simultaneous approximation of multiple polynomial zeros. J. Nonlinear Sci. Appl. (2018); 11(9):1045--1055
         
        
        
            Chicago/Turabian Style
                                                            Proinov, Petko D.. "On the local convergence of Gargantini-Farmer-Loizou method for simultaneous approximation of multiple polynomial zeros." Journal of Nonlinear Sciences and Applications, 11, no. 9 (2018): 1045--1055
         
     
            
    Keywords
    
                -  Iterative methods
-  simultaneous methods
-  Ehrlich method
-  multiple polynomial zeros
-  Gargantini-Farmer-Loizou method
-  local convergence
-  error estimates
    MSC
    
    
        
    References
        
                - 
            [1]
            
                                L. W. Ehrlich,  A modified Newton method for polynomials,  Commun. ACM, 10 (1967), 107–108. 
                            
            
        
                - 
            [2]
            
                                 A. J. Engler, A. Prestel,  Valued Fields, Springer Monographs in Mathematics, Berlin (2005)
                            
            
        
                - 
            [3]
            
                                M. R. Farmer, G. Loizou,  An algorithm for the total or partial factorization of a polynomial,  Math. Proc. Cambridge Philos. Soc., 82 (1977), 427–437. 
                            
            
        
                - 
            [4]
            
                                 I. Gargantini, Further applications of circular arithmetic: Schröder-like algorithms with error bounds for finding zeros of polynomials,  SIAM J. Numer. Anal., 15 (1978),  497–510
                            
            
        
                - 
            [5]
            
                                A. I. Iliev, A generalization of Obreshkoff-Ehrlich method for multiple roots of polynomial equations,  C. R. Acad. Bulg. Sci., 49 (1996),  23–34. 
                            
            
        
                - 
            [6]
            
                                 A. I. Iliev, A generalization of Obreshkoff-Ehrlich method for multiple roots of algebraic, trigonometric and exponential equations,  Math. Balkanica, 14 (2000),  17–28.
                            
            
        
                - 
            [7]
            
                                S. I. Ivanov, A unified semilocal convergence analysis of a family of iterative algorithms for computing all zeros of a polynomial simultaneously,  Numer. Algorithms, 75 (2017),  1193–1204. 
                            
            
        
                - 
            [8]
            
                                 N. V. Kyurkchiev, A. Andreev,  Ehrlich’s methods with a raised speed of convergence, Serdica Math. J., 13 (1987), 52–57.
                            
            
        
                - 
            [9]
            
                                N. V. Kyurkchiev, A. Andreev, V. Popov, Iterative methods for computation of all multiple roots an algebraic polynomial,  Ann. Univ. Sofia Fac. Math. Mech., 78 (1984), 178–185. 
                            
            
        
                - 
            [10]
            
                                 G. V. Milovanović, M. S. Petković, On the convergence order of a modified method for simultaneous finding polynomial zeros, Computing, 30 (1983), 171–178.
                            
            
        
                - 
            [11]
            
                                G. V. Milovanović, M. S. Petković, On computational efficiency of the iterative methods for simultaneous approximation of polynomial zeros, ACM Trans. Math. Soft., 12 (1986),  295–306
                            
            
        
                - 
            [12]
            
                                 M. S. Petković, G. V. Milovanović, A note on some improvements of the simultaneous method for determination of polynomial zeros, J. Comput. Appl. Math., 9 (1983), 65–69.
                            
            
        
                - 
            [13]
            
                                M. S. Petković, G. V. Milovanović, L. V. Stefanović,  On the convergence order of an accelerated simultaneous method for polynomial complex zeros,  Z. Angew. Math. Mech., 66 (1986), 428–429.
                            
            
        
                - 
            [14]
            
                                M. S. Petković, G. V. Milovanović, L. V. Stefanović, Some higher-order methods for the simultaneous approximation of multiple polynomial zeros, Comput. Math. Appl. Ser. A, 12 (1986), 951–962.
                            
            
        
                - 
            [15]
            
                                M. S. Petković, B. Neta, L. D. Petković, J. Džunić, Multipoint methods for solving nonlinear equations,  Elsevier/ Academic Press, Amsterdam (2013)
                            
            
        
                - 
            [16]
            
                                P. D. Proinov, New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems, J. Complexity, 26 (2010), 3–42.
                            
            
        
                - 
            [17]
            
                                P. D. Proinov, General convergence theorems for iterative processes and applications to the Weierstrass root-finding method,  J. Complexity, 33 (2016), 118–144.
                            
            
        
                - 
            [18]
            
                                 P. D. Proinov,  A general semilocal convergence theorem for simultaneous methods for polynomial zeros and its applications to Ehrlich’s and Dochev-Byrnev’s methods,  Appl. Math. Comput., 284 (2016), 102–114.
                            
            
        
                - 
            [19]
            
                                P. D. Proinov, On the local convergence of Ehrlich method for numerical computation of polynomial zeros, Calcolo, 53 (2016), 413–426. 
                            
            
        
                - 
            [20]
            
                                 P. D. Proinov, Unified convergence analysis for Picard iteration in n-dimensional vector spaces, Calcolo, 2018 (2018), 21 pages.
                            
            
        
                - 
            [21]
            
                                P. D. Proinov, S. I. Cholakov,  Convergence of Chebyshev-like method for simultaneous approximation of multiple polynomial zeros,  C. R. Acad. Bulg. Sci., 67 (2014), 907–918.
                            
            
        
                - 
            [22]
            
                                 P. D. Proinov, M. T. Vasileva, On the convergence of high-order Ehrlich-type iterative methods for approximating all zeros of a polynomial simultaneously, J. Inequal. Appl., 2015 (2015),  25 pages.
                            
            
        
                - 
            [23]
            
                                S. Tashev, N. Kyurkchiev, Certain modifications of Newton’s method for the approximate solution of algebraic equations, Serdica Bulg. Math. Publ., 9 (1983),  67–73. 
                            
            
        
                - 
            [24]
            
                                 P. Tilli, Convergence conditions of some methods for the simultaneous computation of polynomial zeros, Calcolo, 35 (1998),  3–15.
                            
            
        
                - 
            [25]
            
                                 D. R. Wang, F. G. Zhao, Complexity analysis of a process for simultaneously obtaining all zeros of polynomials, Computing, 43 (1989), 187–197.