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Abstract
The paper deals with a well known iterative method for simultaneous computation of all zeros (of known multiplicities)

of a polynomial with coefficients in a valued field. This method was independently introduced by Farmer and Loizou [M. R.
Farmer, G. Loizou, Math. Proc. Cambridge Philos. Soc., 82 (1977), 427–437] and Gargantini [I. Gargantini, SIAM J. Numer.
Anal., 15 (1978), 497–510]. If all zeros of the polynomial are simple, the method coincides with the famous Ehrlich’s method [L.
W. Ehrlich, Commun. ACM, 10 (1967), 107–108]. We provide two types of local convergence results for the Gargantini-Farmer-
Loizou method. The first main result improves the results of [N. V. Kyurkchiev, A. Andreev, V. Popov, Ann. Univ. Sofia Fac.
Math. Mech., 78 (1984), 178–185] and [A. I. Iliev, C. R. Acad. Bulg. Sci., 49 (1996), 23–26] for this method. Both main results of the
paper generalize the results of Proinov [P. D. Proinov, Calcolo, 53 (2016), 413–426] for Ehrlich’s method. The results in the present
paper are obtained by applying a new approach for convergence analysis of Picard type iterative methods in finite-dimensional
vector spaces.

Keywords: Iterative methods, simultaneous methods, Ehrlich method, multiple polynomial zeros, Gargantini-Farmer-Loizou
method, local convergence, error estimates.

2010 MSC: 65H05, 47H09, 47H17, 12Y05.
c©2018 All rights reserved.

1. Introduction

Throughout this paper (K, | · |) denotes a valued field with an absolute value | · | (see, e.g. [2]), and
K[z] denotes the ring of polynomials (in one variable) over K. Let f ∈ K[z] be an arbitrary polynomial of
degree n > 2 which splits in K, and let ξ1, . . . , ξs be all pairwise distinct zeros of f of known multiplicities
m1, . . . ,ms (m1 + . . . +ms = n), respectively. We consider the zeros of f as a vector ξ = (ξ1, . . . , ξs) in the
vector space Ks. We equip the space Ks with the norm ‖x‖p = (

∑s
i= 1 |xi|

p)
1/p for some 1 6 p 6∞.

The most famous iterative method for simultaneous computation of all zeros of f with known multi-
plicities is defined in Ks by the following fixed-point iteration:

x(k+1) = Φ(x(k)), k = 0, 1, 2, . . . , (1.1)

where x(0) ∈ Ks is an initial approximation of ξ , and the operator Φ : D ⊂ Ks → Ks is defined by
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Φ(x) = (Φ1(x), . . . ,Φs(x)) with

Φi(x) =


xi −

mi

f ′(xi)

f(xi)
−
∑
j 6= i

mj

xi − xj

, if f(xi) 6= 0,

xi, if f(xi) = 0,

(i = 1, . . . , s), (1.2)

and the domain D of Φ is the set

D =

x ∈ D :
f ′(xi)

f(xi)
−
∑
j 6= i

mj

xi − xj
6= 0 whenever f(xi) 6= 0

 . (1.3)

Here and throughout the paper, D denotes the set of all vectors in Ks with pairwise distinct components,
that is

D =
{
x ∈ Ks : xi 6= xj whenever i 6= j

}
.

The iterative method (1.1) was independently introduced by Farmer and Loizou [3] in 1977 and Gar-
gantini [4] in 1978, and we call it the Gargantini-Farmer-Loizou method. In the case when all the zeros of
f are simple (s = n and m1 = · · · = ms = 1), the method (1.1) coincides with the famous Ehrlich’s method
[1]. A detailed convergence analysis (local and semilocal) of Ehrlich’s method was given in [18, 19].
Some other generalizations of Ehrlich’s method, as well as their convergence analysis, can be found in
[7, 8, 12–14, 22]. In [9] a family of iterative methods that includes the method (1.1) as particular one was
constructed and studied.

Local convergence results for the method (1.1) with error estimates at each iteration were established
by Kyurkchiev et al. [9] in 1984 and Iliev [5, 6] in 1996. In these works, the authors find an expression
Rh (in an implicit form) that depends on n,m1, . . . ,ms and a variable h. They prove that if an initial
approximation x(0) satisfies a condition of the type

‖x(0) − ξ‖∞ 6 c h (1.4)

for some h ∈ (0, 1) and c ∈ [0,Rh sep(f)], then

‖x(k) − ξ‖∞ 6 c h3k for all k > 0. (1.5)

Here and throughout the paper, we denote by sep(f) the separation number of f, which is defined to be the
minimum distance between two distinct zeros of f, that is

sep(f) = min
i 6=j

|ξi − ξj|. (1.6)

It follows from the above result that the Gargantini-Farmer-Loizou method (1.1) has the order of
convergence three, and that the open ball U(ξ , r) with center ξ and radius r = R sep(f) is a convergence
ball of this method.

This paper deals with construction of initial conditions that guarantee the convergence of the iterative
method (1.1) and provide error bounds at each iteration. For some results on the computational efficiency
of the method (1.1), we refer the interested reader to [11] and [15, Section 7.4].

Very recently, Proinov [20] have presented a new approach for convergence analysis (local and semilo-
cal) of the Picard iteration in Ks. In this paper, we apply this approach to the Gargantini-Farmer-Loizou
method (1.1). We provide two types of local convergence results for this method. The first main result
(Theorem 3.4) improves the results [5, 6, 9] mentioned above as well as some other existing results [10, 23–
25]. Both main results of the paper (Theorems 3.4 and 4.3) generalize the local convergence results for
Ehrlich’s method, which were established in [19].
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2. Preliminaries

In this section, we recall two general convergence results of [20] for iterative processes of the type

x(k+1) = T(x(k)), k = 0, 1, 2, . . . , (2.1)

where T : D ⊂ Ks → Ks is an iteration function. These results play a central role in the proofs of the main
results.

2.1. Notations

First we introduce some more notations and definitions that we use in the following sections. Let Ks

be equipped with coordinate-wise ordering � defined by

x � y if and only if xi 6 yi for each i = 1, . . . , s,

and let Ks be endowed with the vector-valued norm (cone norm) ‖ · ‖ : Ks → Rs defined by

‖x‖ = ( |x1|, . . . , |xs| ).

Furthermore, for two vectors x ∈ Ks and y ∈ Rs we denote by
x

y
a vector in Rs defined by

x

y
=

(
|x1|

y1
, . . . ,

|xs|

ys

)
,

provided that y has no zero components. Also, we use the function d : Ks → Rs defined by

d(x) = (d1(x), . . . ,ds(x)) with di(x) = min
j 6= i

|xi − xj| (i = 1, . . . , s).

For a nonnegative integer k and r > 1, Sk(r) stands for the sum

Sk(r) =
∑

06 j<k

rj.

Here and throughout the paper, we assume by definition that 00 = 1.

Definition 2.1 ([16]). A function ϕ : J ⊂ R+ → R+ is said to be quasi-homogeneous of degree r > 0 if
ϕ(λt) 6 λrϕ(t) for all λ ∈ [0, 1] and t ∈ J.

2.2. General local convergence of the first type

Let T : D ⊂ Ks → Ks be an iteration function, and ξ ∈ Ks be a vector with pairwise distinct compo-
nents. The following theorem study the local convergence of the Picard iteration (2.1) with respect to the
function of initial conditions E : Ks → R+ defined by

E(x) =

∥∥∥∥x− ξd(ξ)

∥∥∥∥
p

(1 6 p 6∞). (2.2)

Theorem 2.2 ([20]). Let T : D ⊂ Ks → Ks be an iteration function, ξ ∈ Ks be a vector with pairwise distinct
components, and E : Ks → R+ be defined by (2.2). Suppose there exists a quasi-homogeneous function φ : J→ R+

of degree m > 0 such that for each vector x ∈ Ks with E(x) ∈ J, the following two conditions are satisfied:

(a) x ∈ D;
(b) ‖T(x) − ξ‖ � φ(E(x)) ‖x− ξ‖.
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Let x(0) ∈ Ks be an initial approximation such that

E(x(0)) ∈ J and φ(E(x(0))) < 1. (2.3)

Then the Picard iteration (2.1) is well defined and converges to ξ with order r = m+ 1 and with error estimates

‖x(k+1) − ξ‖ � λrk ‖x(k) − ξ‖ and ‖x(k) − ξ‖ � λSk(r) ‖x(0) − ξ‖ for all k > 0,

where λ = φ(E(x(0))).

Remark 2.3. We note that if φ(R) 6 1 for some R ∈ J, then the initial conditions (2.3) of Theorem 2.2 can be
rewritten in the following equivalent form:

E(x(0)) < R, (2.4)

where the function E is defined by (2.2).

2.3. General local convergence of the second type
Let T : D ⊂ Ks → Ks be an iteration function, and let ξ ∈ Ks be a vector. The next theorem study the

local convergence of the Picard iteration (2.1) with respect to the function of initial conditions E : D→ R+

defined by

E(x) =

∥∥∥∥x− ξd(x)

∥∥∥∥
p

(1 6 p 6∞). (2.5)

In what follows, for a nondecreasing function β : J→ R+, we define the functions ψ,Ψ : J→ R by

ψ(t) = 1 − bt(1 +β(t)), (2.6)
Ψ(t) = 1 − bt−β(t)(1 + bt), (2.7)

where b = 21/q and 1 6 q 6∞ is defined by the condition 1/p+ 1/q = 1. It is easy to see that Ψ = ψ−β.
If ψ is positive, we can define the function φ : J→ R+ by

φ(t) =
β(t)

ψ(t)
. (2.8)

Theorem 2.4 ([20]). Let T : D ⊂ Ks → Ks be an iteration function, ξ ∈ Ks be a vector, and E : D ⊂ Ks → R+

be defined by (2.5). Suppose there exists a nonzero quasi-homogeneous function β : J→ R+ of degree m > 0 such
that for any x ∈ D with E(x) ∈ J, the following two conditions are satisfied:

(a) x ∈ D;
(b) ‖T(x) − ξ ‖ � β(E(x)) ‖x− ξ ‖.

Let x(0) ∈ D be an initial approximation such that

E(x(0)) ∈ J and Ψ(E(x(0))) > 0, (2.9)

where the function Ψ is defined by (2.7). Then the Picard iteration (2.1) is well defined and converges to ξ with error
estimates

‖x(k+1) − ξ‖ � θλrk‖x(k) − ξ‖ and ‖x(k) − ξ‖ � θkλSk(r)‖x(0) − ξ‖ for all k > 0,

where r = m+ 1, λ = φ(E(x(0))), θ = ψ(E(x(0))) and the functions ψ and φ are defined by (2.6) and (2.8),
respectively. Besides, if the inequality in (2.9) is strict, then the order of convergence is at least r.

Remark 2.5. We note that if Ψ(R) > 0 for some R ∈ J, then the initial conditions (2.9) of Theorem 2.4 can be
rewritten in the following equivalent form:

E(x(0)) 6 R, (2.10)

where the function E is defined by (2.5).
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3. Local convergence theorem of the first type

Let f ∈ K[z] be a polynomial of degree n > 2 which splits over K and ξ1, . . . , ξs be all distinct zeros of
f with multiplicity m1, . . . ,ms, respectively.

In this section, we study the local convergence of the Gargantini-Farmer-Loizou iteration (1.1) with
respect to the function of initial conditions E : Ks → R+ defined by (2.2) for some 1 6 p 6∞. The deriva-
tion of our first convergence theorem for this method is based on Theorem 2.2 applied to the operator
Φ : D ⊂ Ks → Ks. In Lemma 3.3 below, we find a quasi-homogeneous function φ : [0, τ)→ R+ of the
second degree, which satisfies the conditions (a) and (b) of Theorem 2.2.

For the sake of brevity, we define the quantities a = a(p,m1, . . . ,ms) and b = b(p) as follows

a = max
16 i6s

1
mi

∑
j 6= i

m
q
j

1/q

and b = 21/q, (3.1)

where 1 6 q 6∞ is defined by 1/p+ 1/q = 1. In Table 1, we give the values of a and b for p = ∞ and
p = 1, where we use the denotations

m = min
16i6s

mi and M = max
16i6s

mi . (3.2)

We note that the quantity a defined in (3.1) was introduced by Proinov and Cholakov [21].

Table 1: Values of a and b for p =∞ and p = 1.

p =∞ q = 1 a = n/m− 1 b = 2
p = 1 q =∞ a =M/m b = 1

In the following lemma, we give lower and upper bounds for the quantities a and b defined by (3.1).

Lemma 3.1. Let n > 2, 1 6 p 6∞, and m1, . . . ,ms be positive integers such that m1 + . . . +ms = n. Then

(s− 1)1/q 6 a 6 n/m− 1 and 1 6 b 6 2, (3.3)

where a,b are defined by (3.1) and m is defined in (3.2).

Proof. We prove only the first part of the claim (3.3), since the second is obvious. Let us define the
quantities a1, . . . ,as by

ai =
1
mi

∑
j6=i

m
q
j

1/q

, i = 1, . . . , s.

By the inequality of arithmetic and geometric means, we obtain∑
j6=i

m
q
j

1/q

> (s− 1)1/q

∏
j6=i

mj

1/(s−1)

.

From this, we get

s∏
i=1

ai > (s− 1)s/q
s∏

i=1

1
mi

∏
j6=i

mj

1/(s−1)

= (s− 1)s/q

(∏s
i=1
∏

j6=imj

)1/(s−1)∏s
i=1mi

= (s− 1)s/q.



P. D. Proinov, J. Nonlinear Sci. Appl., 11 (2018), 1045–1055 1050

It follows from this that ai > (s− 1)1/q for some i. Therefore, a > (s− 1)1/q since a = max{a1, . . . ,as}.
The estimate a 6 n/m− 1 follows from the inequality

ai =
1
mi

∑
j6=i

m
q
j

1/q

6
1
mi

∑
j6=i

mj =
n

mi
− 1 6

n

m
− 1.

This completes the proof.

Lemma 3.2 ([19, Lemma 6.1]). Let x, ξ ∈ Ks and 1 6 p 6∞ (s > 2). If ξ has pairwise distinct components,
then for i 6= j we have

|xi − xj | > (1 − bE(x))di(ξ) and |xi − ξj | > (1 − E(x))dj(ξ),

where E : Ks → R+ is defined by (2.2), and b is defined in (3.1).

Lemma 3.3. Let f ∈ K[z] be a polynomial of degree n > 2 which splits over K, ξ1, . . . , ξs be all pairwise distinct
zeros of f with multiplicity m1, . . . ,ms and 1 6 p 6∞. Suppose x ∈ Ks is a vector satisfying the following
condition

E(x) < τ =
2

b+ 1 +
√
(b− 1)2 + 4a

, (3.4)

where the function E : Ks → R+ is defined by (2.2) and a,b are defined by (3.1). Then x ∈ D and

‖Φ(x) − ξ‖ � φ(E(x)) ‖x− ξ‖, (3.5)

where the function φ : [0, τ)→ R+ is defined by

φ(t) =
at2

(1 − t)(1 − bt) − at2 . (3.6)

Proof. First, we shall prove that x ∈ D . It follows from Lemma 3.2 that x ∈ D. Let f(xi) 6= 0 for some i.
According to (1.3), it remains to prove that

f ′(xi)

f(xi)
−
∑
j 6= i

mj

xi − xj
6= 0. (3.7)

It is well known that if z ∈ K is not a zero of f, then

f ′(z)

f(z)
=
∑
j 6= i

mj

z− ξj
.

Applying this identity to z = xi, we obtain

f ′(xi)

f(xi)
−
∑
j 6= i

mj

xi − xj
=

mi

xi − ξi
+
∑
j 6= i

(
mj

xi − ξj
−

mj

xi − xj

)
=
mi(1 − σi)

xi − ξi
, (3.8)

where σi ∈ K is defined by

σi =
xi − ξi
mi

∑
j 6= i

mj(xj − ξj)

(xi − ξj)(xi − xj)
. (3.9)

According to Lemma 3.1, we have a > 0 and b > 1. Hence, R 6 1/b. Then it follows from (3.1) that
E(x) < 1/b. From the triangle inequality in K, Lemma 3.2, and the definition (2.2) of the function E, we
obtain

|σi| 6
|xi − ξi|

mi

∑
j 6= i

mj |xj − ξj|

|xi − ξj| |xi − xj|
6

E(x)

(1 − E(x))(1 − bE(x))

1
mi

∑
j 6= i

mj |xj − ξj|

dj(ξ)
. (3.10)
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By Hölder’s inequality and the definition (3.1) of the quantity a, we get

1
mi

∑
j 6= i

mj |xj − ξj|

dj(ξ)
6

1
mi

∑
j 6= i

m
q
j

 1
q
∑

j 6= i

(
|xj − ξj|

dj(ξ)

)p
 1

p

6 aE(x). (3.11)

From (3.10) and (3.11), we obtain for σi the following estimate

|σi| 6
aE(x)2

(1 − E(x))(1 − bE(x))
. (3.12)

Let us note that τ, defined in (3.4), is a positive solution of the equation (1 − t)(1 − bt) = at2. Then from
(3.12) and (3.4), we conclude that |σi| < 1. This means that σi 6= 1. Then it follows from (3.8) that the
inequality (3.7) is satisfied. Hence, x ∈ D .

Second, we shall prove (3.5). In other words, we have to prove that for every i = 1, . . . , s, we have

|Φi(x) − ξi| 6 φ(E(x)) |xi − ξi|. (3.13)

If xi = ξi for some i, then Φi(x) = ξi and so (3.13) becomes an equality. Suppose xi 6= ξi. In this case, it
follows from Lemma 3.2 that f(xi) 6= 0. Then from (1.2) and (3.8), we obtain

Φi(x) − ξi = xi − ξi −mi

f ′(xi)
f(xi)

−
∑
j6=i

mj

xi − xj)

−1

= −
σi

1 − σi
(xi − ξi). (3.14)

From this and (3.12), we get

|Φi(x) − ξi| =
|σi|

|1 − σi|
|xi − ξi| 6

|σi|

1 − |σi|
|xi − ξi| 6 φ(E(x)) |xi − ξi|,

which proves (3.13). This completes the proof.

Now we are able to state the main result of this section. This result improves the results of Kyurkchiev
et al. [9] and Iliev [5, 6] for the Gargantini-Farmer-Loizou iteration (1.1). It also generalizes and improves
the results for Ehrlich’s method due to Milovanović and Petković [10], Kyurkchiev and Tashev [23], Wang
and Zhao [25], and Proinov [19].

Theorem 3.4. Let f ∈ K[z] be a polynomial of degree n > 2 which splits over K, ξ1, . . . , ξs be all distinct zeros of
f with multiplicities m1, . . . ,ms (m1 + . . . +ms = n), and 1 6 p 6∞. Let x(0) ∈ Ks be an initial approximation
satisfying

E(x(0)) =

∥∥∥∥x(0) − ξ

d(ξ)

∥∥∥∥
p

< R =
2

b+ 1 +
√
(b− 1)2 + 8a

, (3.15)

where ξ = (ξ1, . . . , ξs), the function E : Ks → R+ is defined by (2.2), and a and b are defined by (3.1). Then the
Gargantini-Farmer-Loizou iteration (1.1) is well defined and converges cubically to ξ with error estimates

‖x(k+1) − ξ‖ � λ3k‖x(k) − ξ‖ and ‖x(k) − ξ‖ � λ(3k−1)/2‖x(0) − ξ‖ for all k > 0, (3.16)

where λ = φ(E(x(0))) and the real function φ is defined by (3.6).

Proof. If s = 1, then the statements hold true trivially because x(k) = ξ for every k > 0. In the nontrivial
case s > 2, we shall apply Theorem 2.2 to the iteration function Φ : D ⊂ Ks → Ks defined by (1.2). Let
J = [0, τ) and φ : J→ R+ be defined by (3.6). It is easy to show that φ is a quasi-homogeneous function of
degree m = 2 and φ(R) = 1. According to Lemma 3.3, φ satisfies conditions (a) and (b) of Theorem 2.2.
On the other hand, it follows from (3.15) that the initial approximation x(0) satisfies condition (2.4). Now
it follows from Theorem 2.2 that the iteration (1.1) is well defined and converges to ξ with order r = 3
and with error estimates (3.16). This completes the proof.
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It follows from Theorem 3.4 that if an initial condition x(0) ∈ Ks satisfies the condition

‖x(0) − ξ‖ 6 R sep(f),

where sep(f) is defined by (1.6), then the iteration (1.1) converges cubically to ξ. Therefore, the open
ball U(ξ , r) with center ξ and radius r = R sep(f) is a convergence ball of the Gargantini-Farmer-Loizou
iteration (1.1).

The main role in Theorem 3.4 is played by the quantity R = R(p,m1, . . . ,ms) defined in (3.15). In
Table 2, we give the values of R for p =∞ and p = 1, where m and M are defined by (3.2).

Table 2: Values of R for p =∞ and p = 1.

p =∞ R = 2/(3 +
√

8n/m− 7 )
p = 1 R = 1/(3 +

√
2M/m )

Remark 3.5. If all zeros of the polynomial f are simple, then Theorem 3.4 coincides with Theorem 2.1
of Proinov [19] for Ehrlich’s method. Hence, it generalizes and improves also the previous convergence
result of the first type for Ehrlich’s method, which belongs to Milovanović and Petković [10], Kyurkchiev
and Tashev [23], and Wang and Zhao [25].

Theorem 3.4 can be reformulated in the following equivalent form.

Theorem 3.6. Let f ∈ K[z] be a polynomial of degree n > 2 which splits over K, ξ1, . . . , ξs be all distinct zeros of
f with multiplicity m1, . . . ,ms (m1 + . . . +ms = n), 1 6 p 6∞, and 0 < h < 1. Suppose x(0) ∈ Ks is an initial
approximation which satisfies the following condition

E(x(0)) =

∥∥∥∥x(0) − ξ

d(ξ)

∥∥∥∥
p

6 Rh =
2

b+ 1 +
√
(b− 1)2 + 4a(1 + 1/h)

. (3.17)

Then the Gargantini-Farmer-Loizou method (1.1) is well defined and converges cubically to ξ with error estimates

‖x(k+1) − ξ‖ � h3k ‖x(k) − ξ‖ and ‖x(k) − ξ‖ � h(3k−1)/2‖x(0) − ξ‖ for all k > 0. (3.18)

Proof. We consider only the nontrivial case s > 2. It follows from the initial condition (3.17), the obvious
inequality Rh < R and Theorem 3.4 that the iteration (1.1) is well defined and converges cubically to ξ
with error estimates (3.16). The estimates (3.18) follow from (3.16) and λ = φ(E(x(0))) 6 φ(Rh) = h.

Corollary 3.7. Let f ∈ K[z] be a polynomial of degree n > 2 which splits over K, ξ1, . . . , ξs be all distinct zeros of
f with multiplicity m1, . . . ,ms (m1 + . . . +ms = n), 1 6 p 6∞, and 0 < h < 1. Suppose x(0) ∈ Ks is an initial
approximation which satisfies the condition

‖x(0) − ξ‖p 6 c h (3.19)

for some h ∈ (0, 1) and c ∈ [0,Rh sep(f)], where sep(f) is defined by (1.6) and Rh is defined by

Rh =
2

b+ 1 +
√
(b− 1)2 + 4a(1 + 1/h2)

. (3.20)

Then the Gargantini-Farmer-Loizou method (1.1) is well defined and converges cubically to ξ with error estimates

‖x(k+1) − ξ‖ � (h2)3k ‖x(k) − ξ‖ and ‖x(k) − ξ‖ � h3k−1‖x(0) − ξ‖ for all k > 0, (3.21)

and
‖x(k) − ξ‖p 6 c h3k for all k > 0. (3.22)
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Proof. It follows from (3.19) and the inequalities c 6 Rh sep(f) and h < 1 that

E(x(0)) =

∥∥∥∥x(0) − ξ

d(ξ)

∥∥∥∥
p

6
‖x(0) − ξ‖p

sep(f)
6

c h

sep(f)
6 hRh 6 Rh .

Therefore, applying Theorem (3.6) with h2 instead of h, we conclude that the iteration (1.1) is well defined
and converges cubically to ξ with error estimates (3.21). Combining the second estimate of (3.21) with the
initial condition (3.20), we deduce the estimate (3.22).

Setting p =∞ in Corollary 3.7, we obtain the following result.

Corollary 3.8. Let f ∈ K[z] be a polynomial of degree n > 2 which splits over K, ξ1, . . . , ξs be all distinct zeros of f
with multiplicitym1, . . . ,ms (m1 + . . . +ms = n), and 0 < h < 1. Suppose x(0) ∈ Ks is an initial approximation
which satisfies the condition (1.4) for some h ∈ (0, 1) and c ∈ [0,Rh sep(f)], where Rh is defined by

Rh =
2

3 +
√

1 + 4(n/m− 1)(1 + 1/h2)
,

sep(f) is defined by (1.6), andm is defined in (3.2). Then the Gargantini-Farmer-Loizou method (1.1) is well defined
and converges cubically to ξ with error estimates (3.18) and (1.5).

Remark 3.9. Corollary 3.8 improves in several direction the corresponding result of Kyurkchiev, Andreev
and Popov [9] and Iliev [5, 6] for the method (1.1). In these works the authors obtained results of the type
of Corollary 3.8 with only the estimate (1.5) and with a smaller Rh which were not obtained in an explicit
form.

4. Local convergence theorem of the second type

Let f ∈ K[z] be a polynomial of degree n > 2 which splits over K and let ξ1, . . . , ξs be all distinct zeros
of f with multiplicity m1, . . . ,ms, respectively.

In this section, we study the local convergence of the Gargantini-Farmer-Loizou iteration (1.1) with
respect to the function of initial conditions E : D ⊂ Ks → R+ defined by (2.5). We begin with a technical
lemma.

Lemma 4.1 ([17, Lemma 7.1]). Let x, ξ ∈ Ks and 1 6 p 6∞ (s > 2). If x has pairwise distinct components,
then for i 6= j we have

|xi − ξj | > (1 − E(x))di(x) and |xi − xj | > dj(x),

where E : D→ R+ is defined by (2.5).

We shall derive a convergence theorem for the method (1.1) by applying Theorem 2.4 to the operator
Φ : D ⊂ Ks → Ks. In the next lemma we find a quasi-homogeneous function β : [0,µ)→ R+ of the second
degree, which satisfies the conditions (a) and (b) of Theorem 2.4.

Lemma 4.2. Let f ∈ K[z] be a polynomial of degree n > 2 which splits over K, and ξ1, . . . , ξs be all distinct zeros
of f with multiplicity m1, . . . ,ms and 1 6 p 6∞. Suppose x ∈ Ks is a vector satisfying the following condition

E(x) =

∥∥∥∥x− ξd(x)

∥∥∥∥
p

< µ =
2

1 +
√

1 + 4a
, (4.1)

where the function E : D ⊂ Ks → R+ is defined by (2.5) and a is defined by (3.1). Then x ∈ D and

‖Φ(x) − ξ ‖ � β(E(x)) ‖x− ξ ‖, (4.2)

where the function β : [0,µ)→ R+ is defined by

β(t) =
at2

1 − t− at2 . (4.3)
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Proof. First, we prove that x ∈ D . Let f(xi) 6= 0 for some i. Let σi ∈ K be again defined by (3.9). From
Lemma 4.1 and (3.11), we obtain

|σi| 6
|xi − ξi|

mi

∑
j 6= i

mj |xj − ξj|

|xi − ξj| |xi − xj|
6

E(x)

1 − E(x)

1
mi

∑
j 6= i

mj |xj − ξj|

dj(ξ)
6
aE(x)2

1 − E(x)
. (4.4)

It follows from (4.4) and (4.1) that |σi| < 1 which means that σi 6= 1. Then it follows from (3.8) that (3.7) is
satisfied. Therefore, x ∈ D .

Now, we shall prove (4.2). In other words, we have to prove that for every i = 1, . . . , s, we have

|Φi(x) − ξi| 6 β(E(x)) |xi − ξi|. (4.5)

If xi = ξi for some i, then Φi(x) = ξi and so (4.5) becomes an equality. In the case xi 6= ξi, it follows from
Lemma 4.1 that f(xi) 6= 0. Combining (3.14) and (4.4), we get

|Φi(x) − ξi| =
|σi|

|1 − σi|
|xi − ξi| 6

|σi|

1 − |σi|
|xi − ξi| 6 β(E(x)) |xi − ξi|,

which proves (4.5). This completes the proof.

We can now state the main result of this section. This result generalizes and improves the results for
Ehrlich’s method due to Wang and Zhao [25], Tilli [24], and Proinov [17]. According to Theorem 2.4, using
the function β defined by (4.3), we have to define the functions ψ and φ by (2.6) and (2.8), respectively. It
is easy to calculate that

ψ(t) =
(1 − t)(1 − bt) − at2

1 − t− at2 (4.6)

and that φ is again defined by (3.6).

Theorem 4.3. Let f ∈ K[z] be a polynomial of degree n > 2 which splits over K, and ξ1, . . . , ξs be all distinct
zeros of f with multiplicity m1, . . . ,ms(m1 + . . . +ms = n) and 1 6 p 6∞. Suppose x(0) ∈ D is an initial
approximation satisfying

E(x(0)) =

∥∥∥∥x(0) − ξ

d(x(0))

∥∥∥∥
p

6 R =
2

b+ 1 +
√

(b− 1)2 + 8a
, (4.7)

where a and b are defined by (3.1). Then the Gargantini-Farmer-Loizou iteration (1.1) is well defined and converges
to ξ with error estimates

‖x(k+1) − ξ‖ � θλ3k‖x(k) − ξ‖ and ‖x(k) − ξ‖ � θkλ(3k−1)/2‖x(0) − ξ‖ for all k > 0, (4.8)

where λ = φ(E(x(0))), θ = ψ(E(x(0))) and the real functions φ and ψ are defined by (3.6) and (4.6), respectively.
Moreover, the method converges cubically to ξ provided that E(x(0)) < R.

Proof. We shall apply Theorem 2.4 to the iteration function Φ : D ⊂ Ks → Ks defined by (1.2). Let us
define the functions β and Ψ on the interval J = [0,µ) by (4.3) and (2.7), respectively. It is easy to show
that β is quasi-homogeneous of degreem = 2. By Lemma 4.2, the conditions (a) and (b) of Theorem 2.4 are
fulfilled. It is easy to show that R is a zero of the polynomial g(t) = (b− 2a)t2 − (b+ 1)t+ 1. This implies
that Ψ(R) = 0 since Ψ(t) = g(t)/(1 − at− at2). Then, it follows from (4.7) that x(0) satisfies condition
(2.10). Now it follows from Theorem 2.4 that the iteration (1.1) is well defined and converges to ξ with
order r = 3 and with error estimates (4.8). Besides, the iteration converges cubically to ξ if E(x(0)) < R.
This completes the proof.

Remark 4.4. If all zeros of the polynomial f are simple, then Theorem 4.3 coincides with Theorem 3.1 of
Proinov [17] for Ehrlich’s method. Therefore, it generalizes and improves as well the previous convergence
result of the second type for Ehrlich’s method, which are due to Wang and Zhao [25] and Tilli [24].
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