The fuzzy \(C\)-delta integral on time scales
Volume 11, Issue 1, pp 161--171
http://dx.doi.org/10.22436/jnsa.011.01.12
Publication Date: January 20, 2018
Submission Date: September 15, 2017
Revision Date: October 18, 2017
Accteptance Date: December 08, 2017
-
2297
Downloads
-
4403
Views
Authors
Xuexiao You
- College of Computer and Information, Hohai University, Nanjing, Jiangsu 210098, P. R. China.
- School of Mathematics and Statistics, Hubei Normal University, Huangshi, Hubei 435002, P. R. China.
Dafang Zhao
- School of Mathematics and Statistics, Hubei Normal University, Huangshi, Hubei 435002, P. R. China.
- College of Science, Hohai University, Nanjing, Jiangsu 210098, P. R. China.
Jian Cheng
- School of Mathematics and Statistics, Hubei Normal University, Huangshi, Hubei 435002, P. R. China.
Tongxing Li
- LinDa Institute of Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Linyi University, Linyi, Shandong 276005, P. R. China.
- School of Information Science and Engineering, Linyi University, Linyi, Shandong 276005, P. R. China.
Abstract
In this paper, we introduce and study the \(C\)-delta integral of interval-valued functions and fuzzy-valued functions on time scales. Also, some basic properties of the fuzzy \(C\)-delta integral are proved. Finally, we give two necessary and sufficient conditions of integrability.
Share and Cite
ISRP Style
Xuexiao You, Dafang Zhao, Jian Cheng, Tongxing Li, The fuzzy \(C\)-delta integral on time scales, Journal of Nonlinear Sciences and Applications, 11 (2018), no. 1, 161--171
AMA Style
You Xuexiao, Zhao Dafang, Cheng Jian, Li Tongxing, The fuzzy \(C\)-delta integral on time scales. J. Nonlinear Sci. Appl. (2018); 11(1):161--171
Chicago/Turabian Style
You, Xuexiao, Zhao, Dafang, Cheng, Jian, Li, Tongxing. "The fuzzy \(C\)-delta integral on time scales." Journal of Nonlinear Sciences and Applications, 11, no. 1 (2018): 161--171
Keywords
- \(C\)-Delta integral
- fuzzy-valued function
- time scale
MSC
References
-
[1]
N. Benkhettou, A. M. C. Brito da Cruz, D. F. M. Torres, A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration, Signal Process., 107 (2015), 230–237.
-
[2]
M. Bohner, A. Peterson , Dynamic equations on time scales, An introduction with applications, Birkhäuser, Boston (2001)
-
[3]
M. Bohner, A. Peterson , Advances in dynamic equations on time scales, Birkhäuser, (2003)
-
[4]
B. Bongiorno, Un nuovo integrale per il problema delle primitive, Le Matematiche, 51 (1997), 299–313.
-
[5]
B. Bongiorno , On the minimal solution of the problem of primitives, J. Math. Anal. Appl., 251 (2000), 479–487.
-
[6]
D. Bongiorno, On the problem of nearly derivatives, Sci. Math. Jpn., 61 (2005), 299–311.
-
[7]
B. Bongiorno, L. Di Piazza, K. Musiał , A decomposition theorem for the fuzzy Henstock integral , Fuzzy Sets and Systems, 200 (2012), 36–47.
-
[8]
B. Bongiorno, L. Di Piazza, D. Preiss, A constructive minimal integral which includes Lebesgue integrable functions and derivatives, J. London Math. Soc., 62 (2000), 117–126.
-
[9]
A. M. Bruckner, R. J. Fleissner, J. Foran, The minimal integral which includes Lebesgue integrable functions and derivatives, Colloq. Math., 2 (1986), 289–293.
-
[10]
A. Cabada, D. R. Vivero, Criterions for absolute continuity on time scales, J. Difference Equ. Appl., 11 (2005), 1013– 1028.
-
[11]
L. Di Piazza, A Riemann-type minimal integral for the classical problem of primitives, Rend. Istit. Mat. Univ. Trieste, 34 (2002), 143–153.
-
[12]
K.-F. Duan , The Henstock–Stieltjes integral for fuzzy-number-valued functions on a infinite interval , J. Comput. Anal. Appl., 20 (2016), 928–937.
-
[13]
G. S. Eun, J. H. Yoon, Y. K. Kim, B. M. Kim, On C-delta integrals on time scales, J. Chungcheong Math. Soc., 25 (2012), 349–357.
-
[14]
R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31–43.
-
[15]
Z. Gong, On the problem of characterizing derivatives for the fuzzy-valued functions (II): almost everywhere differentiability and strong Henstock integral, Fuzzy Sets and Systems, 145 (2004), 381–393.
-
[16]
Z. Gong, Y. Shao, The controlled convergence theorems for the strong Henstock integrals of fuzzy-number-valued functions, Fuzzy Sets and Systems, 160 (2009), 1528–1546.
-
[17]
G. S. Guseinov, Integration on time scales, J. Math. Anal. Appl., 285 (2003), 107–127.
-
[18]
S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universität Würzburg, Würzburg, Germany (1988)
-
[19]
O. Kaleva , Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301–317.
-
[20]
T. Kawasaki, I. Suzuki , Criteria for the C-integral , Sci. Math. Jpn., 79 (2016), 155–164.
-
[21]
T.-Y. Lee, Multipliers for generalized Riemann integrals in the real line, Math. Bohem., 131 (2006), 161–166.
-
[22]
P. Y. Lee, R. Výborný , Integral: An easy approach after Kurzweil and Henstock , Australian Mathematical Society Lecture, Cambridge University Press, Cambridge (2000)
-
[23]
T. Li, S. H. Saker, A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 4185–4188.
-
[24]
K. Musiał , A decomposition theorem for Banach space valued fuzzy Henstock integral, Fuzzy Sets and Systems, 259 (2015), 21–28.
-
[25]
M. D. Ortigueira, D. F. M. Torres, J. J. Trujillo, Exponentials and Laplace transforms on nonuniform time scales, Commun. Nonlinear Sci. Numer. Simul., 39 (2016), 252–270.
-
[26]
J. M. Park, H. W. Ryu, H. K. Lee, D. H. Lee, The \(M_\alpha\) and C-integrals, Czechoslovak Math. J., 62 (2012), 869–878.
-
[27]
A. Peterson, B. Thompson, Henstock–Kurzweil delta and nabla integrals, J. Math. Anal. Appl., 323 (2006), 162–178.
-
[28]
S. Schwabik, G. Ye, Topics in Banach space integration, World Scientific Publishing Co., Hackensack (2005)
-
[29]
Y. Shao, H. Zhang, Existence of the solution for discontinuous fuzzy integro-differential equations and strong fuzzy Henstock integrals, Nonlinear Dyn. Syst. Theory, 14 (2014), 148–161.
-
[30]
E. Talvila , The regulated primitive integral , Illinois J. Math., 53 (2009), 1187–1219.
-
[31]
C.Wu, Z. Gong, On Henstock integrals of interval-valued functions and fuzzy-valued functions, Fuzzy Sets and Systems, 115 (2000), 377–391.
-
[32]
C. Wu, Z. Gong , On Henstock integral of fuzzy-number-valued functions (I), Fuzzy Sets and Systems, 120 (2001), 523–532.
-
[33]
G. Ye, On Henstock–Kurzweil and McShane integrals of Banach space-valued functions, J. Math. Anal. Appl., 330 (2007), 753–765.
-
[34]
J. H. Yoon, On C-delta integral of Banach space valued functions on time scales, J. Chungcheong Math. Soc., 29 (2016), 157–163.
-
[35]
X. You, D. Zhao, On convergence theorems for the McShane integral on time scales, J. Chungcheong Math. Soc., 25 (2012), 393–400.
-
[36]
D. Zhao, C.-S. Hu, The characterization of the primitives of approximately continuous C-integrable functions, J. Math. (Wuhan), 30 (2010), 427–430.
-
[37]
D. Zhao, T. Li, On conformable delta fractional calculus on time scales, J. Math. Computer Sci., 16 (2016), 324–335.
-
[38]
D. Zhao, G. Ye, C-integral and Denjoy-C integral, Commun. Korean Math. Soc., 22 (2007), 27–39.