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Abstract
In this paper, we introduce and study the C-delta integral of interval-valued functions and fuzzy-valued functions on time

scales. Also, some basic properties of the fuzzy C-delta integral are proved. Finally, we give two necessary and sufficient
conditions of integrability.
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1. Introduction

It is well known that the Henstock-Kurzweil integral integrates highly oscillating functions and en-
compasses Newton, Riemann, and Lebesgue integrals [22, 28]. As an important branch in the Henstock-
Kurzweil integration theory, the theory of fuzzy Henstock-Kurzweil integral has been studied extensively
[7, 12, 15, 16, 24, 29, 31, 32]. In 1986, Bruckner et al. [9] considered the function

F(x) =

{
x sin 1

x2 , if 0 < x 6 1,
0, if x = 0.

(1.1)

It is a primitive for the Henstock integral, but it is neither a Lebesgue primitive, a differentiable function,
nor a sum of a Lebesgue primitive and a differentiable function. The natural question is: is there a minimal
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integral including the Lebesgue integral and derivatives? To solve this question, Bongiorno [4] provided
a minimal constructive integration process of Riemann type, i.e., C-integral, which includes the Lebesgue
integral and also integrates the derivatives of differentiable functions. The theory of C-integration has
developed rather intensively in the past few years; see, for instance, the papers [5, 6, 8, 11, 13, 20, 21, 26,
30, 33, 34, 36, 38] and the references cited there.

A time scale T is an arbitrary nonempty closed subset of real numbers R with the subspace topology
inherited from the standard topology of R. The theory of time scales was born in 1988 with the Ph.D.
thesis of Hilger [18]. The aim of this theory is to unify various definitions and results from the theories
of discrete and continuous dynamical systems, and to extend such theories to more general classes of
dynamical systems. It has been extensively studied on various aspects by several authors; see, e.g., [1–
3, 17, 23, 25, 27, 35, 37]. To the best of our knowledge, the C-delta integral of fuzzy-valued functions has
not received attention in the literature of time scales. The main goal of this paper is to generalize the
results above by constructing the C-delta integral of fuzzy-valued functions on time scales.

The paper is organized as follows. Section 2 contains basic concepts of fuzzy sets, time scales, and
C-integral. In Section 3, we give the definition of C-delta integral of interval-valued functions, and discuss
some of its basic properties. In Section 4, the definition of fuzzy C-delta integral is introduced, and two
necessary and sufficient conditions of integrability are presented. We end with Section 5 of conclusions
and future work.

2. Preliminaries

In this section, we recall some basic definitions, notation, properties, and results on fuzzy sets and the
time scale calculus, which are used throughout the paper. Let us denote by RI the set of all nonempty
compact intervals of R, that is, RI = {[u,u

]
| u,u ∈ R and u < u}. u and u are called the lower and the

upper branches of [u,u
]
, respectively. The usual interval operations, i.e., Minkowski addition and scalar

multiplication, are defined by [
u,u

]
+
[
v, v
]
=
[
u+ v,u+ v

]
and

λ[u,u
]
=


[λu, λu

]
, if λ > 0,

{0}, if λ = 0,
[λu, λu

]
, if λ < 0.

The distance between intervals [u,u
]

and [v, v
]

is defined by

d
(
[u,u

]
,
[
v, v
])

= max
{
|u− v|, |u− v|

}
.

Let us denote by RF the class of fuzzy subsets of the real axis. Assume u : R→ [0, 1] satisfies the following
properties:

(1) u is normal, i.e., there exists an x0 ∈ R with u(x0) = 1;

(2) u is a convex fuzzy set, i.e., for all x1, x2 ∈ R, λ ∈ (0, 1), we have

u(λx1 + (1 − λ)x2) > min{u(x1),u(x2)};

(3) u is upper semi-continuous;

(4) [u]0 = {x ∈ R : u(x) > 0} is compact, where A denotes the closure of the set A.

Then RF is called the space of fuzzy numbers. For 0 < α 6 1, denote [u]α = {x ∈ R : u(x) > α}. From the
conditions (1)-(4), it follows that the α-level set [u]α is a nonempty compact interval for all α ∈ [0, 1]. We
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write [u]α =
[
uα,uα

]
. As a distance between fuzzy numbers we use the Hausdorff metric defined by

D(u, v) = sup
α∈[0,1]

d
(
[u]α, [v]α

)
= sup
α∈[0,1]

max
{
|uα − vα|, |uα − vα|

}
for u, v ∈ RF. Then (RF,D) is a complete metric space. The following properties are well-known:

(1) D(u⊕w, v⊕w) = D(u, v);

(2) D(λ� u, λ� v) = |λ|D(u, v);

(3) D(u⊕ v,w⊕ e) 6 D(u,w) +D(v, e) for all u, v,w, e,∈ RF and λ ∈ R.

Let T be a time scale, i.e., a nonempty closed subset of R. For a,b ∈ T we define the closed interval
[a,b]T by [a,b]T = {t ∈ T : a 6 t 6 b}. The open and half-open intervals are defined in a similar way. For
t ∈ T we define the forward jump operator σ by σ(t) = inf{s > t : s ∈ T}, where inf ∅ = sup T, while the
backward jump operator ρ is defined by ρ(t) = sup{s < t : s ∈ T}, where sup ∅ = inf T.

If σ(t) > t, then we say that t is right-scattered, while if ρ(t) < t, then we say that t is left-scattered.
If σ(t) = t and t < sup T, then we say that t is right-dense, while if ρ(t) = t and t > inf T, then we say
that t is left-dense. A point t ∈ T is dense if it is right-dense and left-dense at the same time; isolated if it
is right-scattered and left-scattered at the same time. The forward graininess function µ : T→ [0,∞) and
the backward graininess function η : T → [0,∞) are defined by µ(t) = σ(t) − t and η(t) = t− ρ(t) for all
t ∈ T, respectively. If sup T is finite and left-scattered, then we define Tk = T\{sup T}; otherwise, Tk = T.
If inf T is finite and right-scattered, then Tk = T\{inf T}; otherwise, Tk = T. We set Tkk = Tk ∩Tk.

Throughout this paper, all considered intervals will be intervals in T. A partition D of [a,b]T is a finite
collection of interval-point pairs {([ti−1, ti]T, ξi)}

n
i=1, where

{a = t0 < t1 < · · · < tn−1 < tn = b}

and ξi ∈ [a,b]T for i = 1, 2, . . . ,n. By ∆ti = ti − ti−1 we denote the length of the ith subinterval in the
partition D. δ(ξ) = (δL(ξ), δR(ξ)) is a ∆-gauge for [a,b]T provided that δL(ξ) > 0 on (a,b]T, δR(ξ) > 0
on [a,b)T, δL(a) > 0, δR(b) > 0, and δR(ξ) > µ(ξ) for all ξ ∈ [a,b)T. Let δ1(ξ) and δ2(ξ) be ∆-gauges for
[a,b]T such that 0 < δ1

L(ξ) < δ
2
L(ξ) for all ξ ∈ (a,b]T and 0 < δ1

R(ξ) < δ
2
R(ξ) for all ξ ∈ [a,b)T. Then δ1(ξ)

is finer than δ2(ξ) and we write δ1(ξ) < δ2(ξ). We say that D = {([ti−1, ti]T, ξi)}
n
i=1 is

(1) a partial partition of [a,b]T if
⋃n
i=1[ti−1, ti]T ⊂ [a,b]T;

(2) a partition of [a,b]T if
⋃n
i=1[ti−1, ti]T = [a,b]T;

(3) a δ-fine McShane partition of [a,b]T if [ti−1, ti]T ⊂ (ξi − δL(ξi), ξi + δR(ξi))T and ξi ∈ [a,b]T for all
i = 1, 2, . . . ,n;

(4) a δ-fine C-partition of [a,b]T if it is a δ-fine McShane partition of [a,b]T satisfying the condition

n∑
i=1

dist(ξi, [ti−1, ti]T) <
1
ε

for the given arbitrary ε > 0, where dist(ξi, [ti−1, ti]T) denotes the distance of ξi from [ti−1, ti]T.

Given a δ-fine C-partition (McShane partition) D = {([ti−1, ti]T, ξi)}
n
i=1 of [a,b]T, we write

S(f,D, δ) =
n∑
i=1

f(ξi)(ti − ti−1)

for integral sums over D, whenever f : [a,b]T → R or f : [a,b]T → RF.
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Definition 2.1. A function f : [a,b]T → R is called McShane delta integrable on [a,b]T if there exists an
A ∈ R such that for each ε > 0 there exists a ∆-gauge, δ, for [a,b]T such that∣∣S(f,D, δ),A

∣∣ < ε
for each δ-fine McShane partition D = {([ti−1, ti]T, ξi)}

n
i=1 of [a,b]T. In this case, A is called the McShane

delta integral of f on [a,b]T and is denoted by A = (M)
∫b
a f(t)∆t.

Definition 2.2. A function f : [a,b]T → R is called C-delta integrable on [a,b]T if there exists an A ∈ R

such that for each ε > 0 there exists a ∆-gauge, δ, for [a,b]T such that∣∣S(f,D, δ),A
∣∣ < ε

for each δ-fine C-partition D = {([ti−1, ti]T, ξi)}
n
i=1 of [a,b]T. In this case, A is called the C-delta integral of

f on [a,b]T and is denoted by A = (C)
∫b
a f(t)∆t. The collection of all functions that are C-delta integrable

on [a,b]T will be denoted by C(∆, [a,b]T).

Lemma 2.3 ([19]). If u ∈ RF, then

(1) [u]α is a closed interval, α ∈ [0, 1];
(2) [u]α1 ⊃ [u]α2 whenever 0 6 α1 6 α2 6 1;
(3) for any αn converging increasingly to α ∈ (0, 1],

⋂∞
n=1[u]

αn = [u]α.

Conversely, if {Ãα : α ∈ [0, 1]} is a family of subsets of R satisfying (1)-(3), then there exists a u ∈ RF such that
[u]α = Ãα for α ∈ (0, 1] and

[u]0 =
⋃

0<α61

Ãα ⊂ Ã0.

Lemma 2.4 ([14]). If u ∈ RF, then

(1) uα is a bounded nondecreasing function on [0, 1];
(2) uα is a bounded nonincreasing function on [0, 1];
(3) u1 6 u1;
(4) for c ∈ (0, 1], limα→c− uα = uc, limα→c− uα = uc;
(5) limα→0+ u

α = u0, limα→0+ uα = u0.

Conversely, if uα and uα satisfy (1)-(5), then there exists a v ∈ RF such that [v]α =
[
vα, vα

]
=
[
uα,uα

]
.

3. C-Delta integral of interval-valued functions

Definition 3.1. An interval-valued function f : [a,b]T → RI is called interval C-delta integrable (IC ∆-
integrable) on [a,b]T if there exists an A ∈ RI such that for each ε > 0 there exists a ∆-gauge, δ, for [a,b]T
such that

d
(
S(f,D, δ),A

)
< ε

for each δ-fine C-partition D = {([ti−1, ti]T, ξi)}
n
i=1 of [a,b]T. In this case, A is called the IC ∆-integral of

f on [a,b]T and is denoted by A = (IC)
∫b
a f(t)∆t. The collection of all functions that are IC ∆-integrable

on [a,b]T will be denoted by IC(∆, [a,b]T).

For the IC ∆-integral, we have the following properties.

Theorem 3.2. An interval-valued function f(t) ∈ IC(∆, [a,b]T) if and only if f(t), f(t) ∈ C(∆, [a,b]T) and

(IC)

∫b
a

f(t)∆t =

[
(C)

∫b
a

f(t)∆t, (C)
∫b
a

f(t)∆t

]
.
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Proof. Let f(t) ∈ IC(∆, [a,b]T). Then there exists an A ∈ RI such that for each ε > 0 there exists a ∆-gauge,
δ, for [a,b]T such that

d
(
S(f,D, δ),A

)
< ε

for each δ-fine C-partition D = {([ti−1, ti]T, ξi)}
n
i=1 of [a,b]T. It follows that

max
(∣∣S(f,D, δ) −A

∣∣, ∣∣S(f,D, δ) −A
∣∣) < ε.

Then we have ∣∣S(f,D, δ) −A
∣∣ < ε,

∣∣S(f,D, δ) −A
∣∣ < ε.

By Definition 2.2, f(t), f(t) ∈ C(∆, [a,b]T) and

(IC)

∫b
a

f(t)∆t =

[
(C)

∫b
a

f(t)∆t, (C)

∫b
a

f(t)∆t

]
.

Conversely, if f(t) ∈ C(∆, [a,b]T), then there exists an A ∈ R such that for each ε > 0 there exists a
∆-gauge, δ1, for [a,b]T such that ∣∣S(f,D1, δ1) −A

∣∣ < ε
for each δ1-fine C-partition D1 of [a,b]T. Similarly, there exists a ∆-gauge δ2 such that∣∣S(f,D2, δ2) −A

∣∣ < ε
for each δ2-fine C-partition D2 of [a,b]T.

Let δ2 = min{δ1, δ2} and A = [A,A]. Then

d
(
S(f,D, δ),A

)
< ε

for each δ-fine C-partition D of [a,b]T and the proof is complete.

The following Theorems 3.3 and 3.4 are obvious, because their proofs are similar to those of [27].

Theorem 3.3. If f(t),g(t) ∈ IC(∆, [a,b]T) and α,β ∈ R, then αf(t) +βg(t) ∈ IC(∆, [a,b]T) and

(IC)

∫b
a

(αf(t) +βg(t))∆t = α(IC)

∫b
a

f(t)∆t+β(IC)

∫b
a

g(t)∆t.

Theorem 3.4. Let a < c < b. If f(t) ∈ IC(∆, [a,c]T) and f(t) ∈ IC(∆, [c,b]T), then so it is on [a,b]T and

(IC)

∫b
a

f(t)∆t = (IC)

∫c
a

f(t)∆t+ (IC)

∫b
c

f(t)∆t.

4. C-Delta integral of fuzzy-valued functions

Definition 4.1. A fuzzy-valued function f : [a,b]T → RF is called fuzzy C-delta integrable (FC ∆-
integrable) on [a,b]T if there exists a fuzzy number Ã ∈ RF such that for each ε > 0 there exists a
∆-gauge, δ, for [a,b]T such that

D
(
S(f,D, δ), Ã

)
< ε

for each δ-fine C-partition D = {([ti−1, ti]T, ξi)}
n
i=1 of [a,b]T. In this case, Ã is called the FC ∆-integral of

f on [a,b]T and is denoted by Ã = (FC)
∫b
a f(t)∆t. The collection of all functions that are FC ∆-integrable

on [a,b]T will be denoted by FC(∆, [a,b]T).
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Remark 4.2. It is clear that if f is a real-valued function, then Definition 4.1 yields the definition of C-delta
integral introduced by [13].

For the FC ∆-integral, we have the following properties.

Theorem 4.3. If f(t) ∈ FC(∆, [a,c]T), then the integral of f(t) is determined uniquely.

Theorem 4.4. If f(t),g(t) ∈ FC(∆, [a,c]T) and α,β ∈ R, then αf(t) +βg(t) ∈ FC(∆, [a,c]T) and

(FC)

∫b
a

(αf(t) +βg(t))∆t = α(FC)

∫b
a

f(t)∆t+β(FC)

∫b
a

g(t)∆t.

Theorem 4.5 (Cauchy-Bolzano condition). A function f(t) ∈ FC(∆, [a,c]T) if and only if for each ε > 0 there
exists a ∆-gauge, δ, for [a,b]T such that

D
(
S(f,D1, δ),S(f,D2, δ)

)
< ε

for each pair of δ-fine C-partitions D1,D2 of [a,b]T.

Theorem 4.6. Let a < c < b. If f(t) ∈ FC(∆, [a,c]T) and f(t) ∈ FC(∆, [c,b]T), then so it is on [a,b]T and

(FC)

∫b
a

f(t)∆t = (FC)

∫c
a

f(t)∆t+ (FC)

∫b
c

f(t)∆t.

Theorem 4.7. If f(t) ∈ FC(∆, [a,b]T), then f(t) ∈ FC(∆, [c,d]T) for any [c,d]T ⊂ [a,b]T.

Proof. We only prove that Theorem 4.5 holds, the others are obvious.

(Necessity). Suppose that f(t) ∈ FC(∆, [a,c]T) and ε > 0. Then, there exists a ∆-gauge, δ, for [a,b]T such
that

D

(
S(f,D, δ), (FC)

∫b
a

f(t)∆t

)
<
ε

2

for each δ-fine C-partition D = {([ti−1, ti]T, ξi)}
n
i=1 of [a,b]T.

Let D1 and D2 be two δ-fine C-partitions of [a,b]T. Then,

D
(
S(f,D1, δ),S(f,D2, δ)

)
6 D

(
S(f,D1, δ), (FC)

∫b
a

f(t)∆t

)
+D

(
S(f,D2, δ), (FC)

∫b
a

f(t)∆t

)
<
ε

2
+
ε

2
= ε.

(Sufficiency). For each n ∈N, choose a ∆n-gauge, δn, for [a,b]T such that for any two δn-fine C-partitions
D1 and D2 of [a,b]T we have

D
(
S(f,D1, δn),S(f,D2, δn)

)
<

1
n

.

Replacing δn with
⋂n
j=1 δj = δn, we may assume that δn+1 ⊂ δn. For each n, fix a δn-fine C-partitions

Dn. Note that for j > n, since δj ⊂ δn, Dj is a δn-fine C-partitions of [a,b]T. Thus,

D
(
S(f,Dn, δn),S(f,Dj, δn)

)
<

1
n

,

which implies that the sequence {S(f,Dn, δn)} is a Cauchy sequence, and hence converges. Let Ã be the
limit of this sequence. It follows from the previous inequality that

D
(
S(f,Dn, δn), Ã

)
<

1
n

.

It remains to show that Ã satisfies Definition 4.1. Fix ε > 0 and choose N > 2/ε. Let D be a δN-fine
C-partitions of [a,b]T. Then,

D
(
S(f,D, δN), Ã

)
6 D

(
S(f,D1, δN),S(f,D, δN)

)
+D

(
S(f,D, δN), Ã

)
<

1
N

+
1
N
< ε.

It follows now that f(t) ∈ FC(∆, [a,c]T). The proof is complete.
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Definition 4.8 ([27]). We say that a subset E of a time scale T has delta measure zero provided that E
contains no right-scattered points and E has Lebesgue measure zero. We say that a property A holds
delta almost everywhere (delta a.e.) on T provided that there is a subset E of T such that the property A
holds for all t ∈ E and E has delta measure zero.

Theorem 4.9. If f(t) = g(t) holds delta a.e. on [a,b]T and f(t) ∈ FC(∆, [a,b]T), then g(t) ∈ FC(∆, [a,b]T) and

(FC)

∫b
a

f(t)∆t = (FC)

∫b
a

g(t)∆t.

Proof. Let Ã denote the integral value of f(t) on [a,b]T. Given ε > 0 there exists a ∆-gauge, δ, for [a,b]T
such that

D
(
S(f,D, δ), Ã

)
< ε

for each δ-fine C-partition D = {([ti−1, ti]T, ξi)}
n
i=1 of [a,b]T.

Set E =
∑∞
j=1 Ej, where

Ej = {t : j− 1 < D(f(t),g(t)) 6 j, j = 1, 2, . . . , t ∈ [a,b]T}.

For each j, there is an Fj which is the union of a countable number of open intervals with the total length
less than ε · 2−j · j−1 and such that Ej ⊂ Fj. Then define

δ(ξ) =

{
(δ0
L(ξ), δ

0
R(ξ)), if ξ ∈ [a,b]T\E,

(δ1
L(ξ), δ

1
R(ξ)), such that (ξ− δ1

L(ξ), ξ+ δ
1
R(ξ))T ⊂ Fj, ξ ∈ Ej.

Then, for any δ-fine C-partition D = {([ti−1, ti]T, ξi)}
n
i=1 of [a,b]T, we have

D
(
S(g,D, δ), Ã

)
= D

( ∑
ξi∈[a,b]T

g(ξi)(ti − ti−1), Ã
)

= D
(∑
ξi∈E

g(ξi)(ti − ti−1) +
∑

ξi∈[a,b]T\E

g(ξi)(ti − ti−1), Ã
)

= D
(∑
ξi∈E

g(ξi)(ti − ti−1) +
∑

ξi∈[a,b]T\E

f(ξi)(ti − ti−1) +
∑
ξi∈E

f(ξi)(ti − ti−1),

Ã+
∑
ξi∈E

f(ξi)(ti − ti−1)
)

6 D
( ∑
ξi∈[a,b]T

f(ξi)(ti − ti−1), Ã
)
+D

(∑
ξi∈E

g(ξi)(ti − ti−1),
∑
ξi∈E

f(ξi)(ti − ti−1)
)

6 ε+
∞∑
j=1

∑
ξi∈Ej

D
(
g(ξi), f(ξi)

)
(ti − ti−1) 6 2ε.

The proof is complete.

Theorem 4.10 (Dominated convergence theorem). Assume

(1) limn→∞ fn(t) = f(t) holds delta a.e. on [a,b]T;
(2) g(t) 6 fn 6 h(t) holds delta a.e. on [a,b]T and fn,g,h ∈ C(∆, [a,b]T).

Then f(t) ∈ C(∆, [a,b]T) and

lim
n→∞(C)

∫b
a

fn(t)∆t = (C)

∫b
a

f(t)∆t.
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Proof. By hypotheses, the function φ(t) = h(t) − g(t) is McShane delta integrable on [a,b]T and |fn(t) −
fm(t)| 6 φ(t) on [a,b]T for all n and m. By the dominated convergence theorem for McShane integral
(see [35]), f(t) − f1(t) is McShane delta integrable on [a,b]T and

lim
n→∞(C)

∫b
a

(fn(t) − f1(t))∆t = (C)

∫b
a

(f(t) − f1(t))∆t.

In particular, the sequence
{
(C)
∫b
a fn(t)∆t

}
converges. Let ε > 0. Since the function Φ(x) = {

∫x
aφ(t)∆t}

is absolutely continuous on [a,b]T (see [10]), there exists a δ > 0 such that

n∑
i=1

|Φ(ti) −Φ(ti−1)| < ε

whenever ti−1 6 ti and {[ti−1, ti)T}
n
i=1 is a finite collection of non-overlapping intervals in [a,b]T satisfy-

ing
n∑
i=1

(ti − ti−1) < δ.

By Egorov’s theorem, there exists an open set G with m(G) < δ such that limn→∞ fn(t) = f(t) uniformly
for t ∈ [a,b]T\G. Choose a positive integer N such that∣∣∣∣∣(C)

∫b
a

fn(t)∆t− (C)

∫b
a

fm(t)∆t

∣∣∣∣∣ < ε and |fn − fm| < ε

for all m,n > N and for all t ∈ [a,b]T\G. Let δΦ(ξ) = (δL(ξ), δR(ξ)) be a ∆-gauge for [a,b]T such that∣∣∣∣∣S(Φ,D, δΦ) − (M)

∫b
a

Φ(t)∆t

∣∣∣∣∣ < ε and

∣∣∣∣∣S(fn,D, δΦ) − (C)

∫b
a

fn(t)∆t

∣∣∣∣∣ < ε
for 1 6 n 6 N whenever D is a δΦ-fine C-partition of [a,b]T. Define a ∆-gauge, δ, for [a,b]T by

δ(ξ) =

{
δΦ(ξ), if ξ ∈ [a,b]T\G,
min{δΦ(ξ), ρ(ξ,G)}, if ξ ∈ G,

where ρ(ξ,G) = inf{|ξ− ξ ′| : ξ ′ ∈ G}. Suppose that D is a δ-fine C-partition of [a,b]T and fix n > N. Then∣∣∣∣∣S(fn,D, δ) − (C)

∫b
a

fn(t)∆t

∣∣∣∣∣ 6 |S(fn,D, δ) − S(fN,D, δ)|+

∣∣∣∣∣S(fN,D, δ) −
∫b
a

fN(t)∆t

∣∣∣∣∣
+

∣∣∣∣∣(C)
∫b
a

fN(t)∆t− (C)

∫b
a

fn(t)∆t

∣∣∣∣∣
6

∣∣∣∣∣ ∑
ξi∈[a,b]T\G

fn(ξi)(ti − ti−1) −
∑

ξi∈[a,b]T\G

fN(ξi)(ti − ti−1)

∣∣∣∣∣
+

∣∣∣∣∣ ∑
ξi∈G

fn(ξi)(ti − ti−1) −
∑
ξi∈G

fN(ξi)(ti − ti−1)

∣∣∣∣∣+ ε+ ε
6 (b− a+ 2)ε+

∑
ξi∈G

|fn(ξi) − fN(ξi)|(ti − ti−1)

6 (b− a+ 2)ε+

∣∣∣∣∣ ∑
ξi∈G

φ(ξi)(ti − ti−1) − (M)

∫
G

φ(t)∆t

∣∣∣∣∣+
∣∣∣∣∣(M)

∫
G

φ(t)∆t

∣∣∣∣∣
6 (b− a+ 4)ε.
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It follows that
{
(C)
∫b
a fn(t)∆t

}
is a Cauchy sequence. Consequently, we have f(t) ∈ C(∆, [a,b]T) and

lim
n→∞(C)

∫b
a

fn(t)∆t = (C)

∫b
a

f(t)∆t.

The proof is complete.

Now, we have the necessary machinery to prove the following theorem.

Theorem 4.11. Let f(t) be a fuzzy-valued function. Then f(t) ∈ FC(∆, [a,b]T) if and only if uα,uα ∈ C(∆, [a,b]T)
for any α ∈ [0, 1] uniformly, i.e., where ∆-gauge in Definition 4.1 is independent of α ∈ [0, 1].

Proof.

(Necessity). Let Ã denote the integral value of f(t) on [a,b]T. Given ε > 0 there exists a ∆-gauge, δ, for
[a,b]T such that

D
(
S(f,D, δ), Ã

)
< ε

for each δ-fine C-partition D = {([ti−1, ti]T, ξi)}
n
i=1 of [a,b]T. Then

sup
α∈[0,1]

max

{∣∣∣∣∣
[
n∑
i=1

f(ξi)(ti − ti−1)

]α
− Ãα

∣∣∣∣∣,
∣∣∣∣∣
[
n∑
i=1

f(ξi)(ti − ti−1)

]α
− Ãα

∣∣∣∣∣
}

= sup
α∈[0,1]

max

{∣∣∣∣∣
n∑
i=1

f(ξi)
α(ti − ti−1) − Ã

α

∣∣∣∣∣,
∣∣∣∣∣
n∑
i=1

f(ξi)α(ti − ti−1) − Ãα

∣∣∣∣∣
}
< ε.

Hence, for any α ∈ [0, 1] and for any δ-fine C-partition D = {([ti−1, ti]T, ξi)}
n
i=1 of [a,b]T, we have∣∣∣∣∣

n∑
i=1

f(ξi)
α(ti − ti−1) − Ã

α

∣∣∣∣∣ < ε,

∣∣∣∣∣
n∑
i=1

f(ξi)α(ti − ti−1) − Ãα

∣∣∣∣∣ < ε.

This implies that uα,uα ∈ C(∆, [a,b]T) for any α ∈ [0, 1] uniformly.

(Sufficiency). Since uα,uα ∈ C(∆, [a,b]T) for any α ∈ [0, 1] uniformly, given ε > 0 there exists a ∆-gauge,
δ, for [a,b]T such that∣∣∣∣∣

n∑
i=1

f(ξi)
α(ti − ti−1) − Ã

α

∣∣∣∣∣ < ε,

∣∣∣∣∣
n∑
i=1

f(ξi)α(ti − ti−1) − Ãα

∣∣∣∣∣ < ε
for any δ-fine C-partition D = {([ti−1, ti]T, ξi)}

n
i=1 of [a,b]T and for any α ∈ [0, 1], where Ãα and Ãα are

the integral values of f(ξi)α and f(ξi)α, respectively.

We can prove that the class of closed intervals
{[
Ãα, Ãα

]
,α ∈ [0, 1]

}
determines a fuzzy number. In

fact,
[
Ãα, Ãα

]
satisfies all conditions of Lemma 2.3.

(1). Since f(t)α 6 f(t)α, α ∈ [0, 1], we have Ãα 6 Ãα, i.e.,
[
Ãα, Ãα

]
is a closed interval, α ∈ [0, 1].

(2). Since f(t)α is a nondecreasing function on [0, 1] and f(t)α is a nonincreasing function on [0, 1], for any
0 6 α1 6 α2 6 1, we get

(FC)

∫b
a

f(t)α1∆t 6 (FC)

∫b
a

f(t)α2∆t 6 (FC)

∫b
a

f(t)α2∆t 6 (FC)

∫b
a

f(t)α1∆t,

which yields
[
Ãα1 , Ãα1

]
⊃
[
Ãα2 , Ãα2

]
.
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(3). For any αn converging increasingly to α ∈ (0, 1],
⋂∞
n=1

[
f(t)

]αn =
[
f(t)

]α, i.e.,

∞⋂
n=1

[
f(t)αn , f(t)αn

]
=
[
f(t)α, f(t)α

]
.

That is,
lim
n→∞ f(t)αn = f(t)α, lim

n→∞ f(t)αn = f(t)α.

We also have
f(t)0 6 f(t)αn 6 f(t)1, f(t)1 6 f(t)αn 6 f(t)0.

Thanks to Theorem 4.10, we infer that f(t)α, f(t)α ∈ C(∆, [a,b]T) and

lim
n→∞(C)

∫b
a

f(t)αn∆t = (C)

∫b
a

f(t)α∆t, lim
n→∞(C)

∫b
a

f(t)αn∆t = (C)

∫b
a

f(t)α∆t.

Consequently, we obtain ∞⋂
n=1

[
Ãαn , Ãαn

]
=
[
Ãα, Ãα

]
.

Define Ã as a fuzzy number which is determined by the closed intervals class
{[
Ãα, Ãα

]
,α ∈ [0, 1]

}
.

Then, for any δ-fine C-partition D = {([ti−1, ti]T, ξi)}
n
i=1 of [a,b]T, we have

D
(
S(f,D, δ), Ã

)
< ε.

The proof is complete.

5. Conclusions

This paper investigated the C-delta integral of interval-valued functions and fuzzy-valued functions
on time scales. we gave generalizations of some results on the C-delta integral on time scales. The next
steps in the research direction proposed here is to study the characterizations of fuzzy C-delta integrable
functions.
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