Optimal inequalities for a Toader-type mean by quadratic and contraharmonic means
Volume 11, Issue 1, pp 150--160
http://dx.doi.org/10.22436/jnsa.011.01.11
Publication Date: January 20, 2018
Submission Date: May 16, 2017
Revision Date: November 09, 2017
Accteptance Date: November 25, 2017
-
2357
Downloads
-
4432
Views
Authors
Zhengchao Ji
- Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China.
Qing Ding
- College of Mathematics and Statistics, Hunan University of Finance and Economics, Changsha 410205, China.
Tiehong Zhao
- Department of Mathematics, Hangzhou Normal University, Hangzhou 311121, China.
Abstract
In this paper, we present the best possible parameters \(\alpha_i, \beta_i\ (i=1,2,3)\) and \(\alpha_4,\beta_4\in(1/2,1)\) such that the double inequalities
\[\alpha_1Q(a,b)+(1-\alpha_1)C(a,b) <T_{Q,C}(a,b)<\beta_1Q(a,b)+(1-\beta_1)C(a,b),\]
\[\qquad\ Q^{\alpha_2}(a,b)C^{1-\alpha_2}(a,b) <T_{Q,C}(a,b)<Q^{\beta_2}(a,b)C^{1-\beta_2}(a,b),\]
\[\frac{Q(a,b)C(a,b)}{\alpha_3Q(a,b)+(1-\alpha_3)C(a,b)} <T_{Q,C}(a,b)<\frac{Q(a,b)C(a,b)}{\beta_3Q(a,b)+(1-\beta_3)C(a,b)},\]
\[C\left(\sqrt{\alpha_4a^2+(1-\alpha_4)b^2},\sqrt{(1-\alpha_4)a^2+\alpha_4b^2}\right) <T_{Q,C}(a,b)<C\left(\sqrt{\beta_4a^2+(1-\beta_4)b^2},\sqrt{(1-\beta_4)a^2+\beta_4b^2}\right)
\]
hold for all \(a, b>0\) with \(a\neq b\), where \(Q(a,b)\), \(C(a,b)\), and \(T(a,b)\) are the quadratic, contraharmonic, and Toader means, respectively, and \(T_{Q,C}(a,b)=T[Q(a,b),C(a,b)]\). As consequences, we provide new bounds for the complete elliptic integral of the second kind.
Share and Cite
ISRP Style
Zhengchao Ji, Qing Ding, Tiehong Zhao, Optimal inequalities for a Toader-type mean by quadratic and contraharmonic means, Journal of Nonlinear Sciences and Applications, 11 (2018), no. 1, 150--160
AMA Style
Ji Zhengchao, Ding Qing, Zhao Tiehong, Optimal inequalities for a Toader-type mean by quadratic and contraharmonic means. J. Nonlinear Sci. Appl. (2018); 11(1):150--160
Chicago/Turabian Style
Ji, Zhengchao, Ding, Qing, Zhao, Tiehong. "Optimal inequalities for a Toader-type mean by quadratic and contraharmonic means." Journal of Nonlinear Sciences and Applications, 11, no. 1 (2018): 150--160
Keywords
- Toader mean
- elliptic integral
- quadratic mean
- contraharmonic mean
MSC
References
-
[1]
H. Alzer, S.-L. Qiu, Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math., 172 (2004), 289–312.
-
[2]
G. D. Anderson, M. K. Vamanamurthy, M. K. Vuorinen , Conformal Invariants, Inequalities, and Quasiconformal Maps, John Wiley & Sons, New York (1997)
-
[3]
R. W. Barnard, K. Pearce, K. C. Richards, An inequality involving the generalized hypergeometric function and the arc length of an ellipse, SIAM J. Math. Anal., 31 (2000), 693–699.
-
[4]
J. M. Borwein, P. B. Borwein, Pi and the AGM, John Wiley & Sons, NewYork (1987)
-
[5]
Y.-M. Chu, S.-W. Hou , Sharp bounds for Seiffert mean in terms of contraharmonic mean, Abstr. Appl. Anal., 2012 (2012 ), 6 pages.
-
[6]
Y.-M. Chu, S. W. Hou, W.-F. Xia, Optimal convex combinations bounds of centroidal and harmonic means for logarithmic and identric means,, Bull. Iranian Math. Soc., 39 (2013), 259–269.
-
[7]
Y.-M. Chu, B.-Y. Long, Bounds of the Neuman-Sándor mean using power and identic means, Abstr. Appl. Anal., 2013 (2013), 6 pages.
-
[8]
H.-H. Chu, W.-M. Qian, Y.-M. Chu, Y.-Q. Song, Optimal bounds for a Toader-type mean in terms of one-parameter quadratic and contraharmonic means, J. Nonlinear Sci. Appl., 9 (2016), 3424–3432.
-
[9]
Y.-M. Chu, Y.-F. Qiu, M.-K. Wang , Sharp power mean bounds for the combination of Seiffert and geometric means, Abstr. Appl. Anal., 2010 (2010), 12 pages.
-
[10]
Y.-M. Chu, M.-K. Wang, Inequalities between arithmetic-geometric, Gini, and Toader means , Abstr. Appl. Anal., 2012 (2012), 11 pages.
-
[11]
Y.-M. Chu, M.-K. Wang , Optimal Lehmer mean bounds for the Toader mean , Results Math., 61 (2012), 223–229.
-
[12]
Y.-M. Chu, M.-K. Wang, Y.-P. Jiang, S.-L. Qiu, Concavity of the complete elliptic integrals of the second kind with respect to Hölder means, J. Math. Anal. Appl., 395 (2012), 637–642.
-
[13]
Y.-M. Chu, M.-K. Wang, X.-Y. Ma, Sharp bounds for Toader mean in terms of contraharmonic mean with applications, J. Math. Inequal., 7 (2013), 161–166.
-
[14]
Y.-M. Chu, M.-K. Wang, S.-L. Qiu , Optimal combinations bounds of root-square and arithmetic means for Toader mean, Proc. Indian Acad. Sci. Math. Sci., 122 (2012), 41–51.
-
[15]
Y.-M. Chu, M.-K. Wang, S.-L. Qiu, Y.-P. Jiang, Bounds for complete elliptic integrals of the second kind with applications, Comput. Math. Appl., 63 (2012), 1177–1184.
-
[16]
Y.-M. Chu, M.-K. Wang, S.-L. Qiu, Y.-F. Qiu, Sharp generalized Seiffert mean bounds for Toader mean, Abstr. Appl. Anal., 2011 (2011 ), 8 pages.
-
[17]
Y.-M. Chu, W.-F. Xia, Two sharp inequalities for power mean, geometric mean, and harmonic mean, J. Inequal. Appl., 2009 (2009 ), 6 pages.
-
[18]
Y.-M. Chu, W.-F. Xia , Two optimal double inequalities between power mean and logarithmic mean, Comput. Math. Appl., 60 (2010), 83–89.
-
[19]
Z.-J. Guo, Y. Zhang, Y.-M. Chu, Y.-Q. Song, Sharp bounds for Neuman means in terms of geometric, arithmetic and quadratic means, J. Math. Inequal., 10 (2016), 301–312.
-
[20]
H. Kazi, E. Neuman, , Inequalities and bounds for elliptic integrals , J. Approx. Theory, 146 (2007), 212–226.
-
[21]
H. Kazi, E. Neuman , Inequalities and bounds for elliptic integrals II, Amer. Math. Soc., 471 (2008), 127–138.
-
[22]
Y.-M. Li, B.-Y. Long, Y.-M. Chu, Sharp bounds by the power mean for the generalized Heronian mean, J. Inequal. Appl., 2012 (2012 ), 9 pages.
-
[23]
N. Li, T. Zhao, Y. Zhao , Bounds for a Toader-type mean by arithmetic and contraharmonic means, Int. J. Pure Appl. Math., 105 (2015), 257–268.
-
[24]
E. Neuman , Bounds for symmetric elliptic integrals, J. Approx. Theory, 122 (2003), 249–259.
-
[25]
W.-M. Qian, Y.-M. Chu, Sharp bounds for a special quasi- arithmetic mean in terms of arithmetic and geometric means with two parameters, J. Inequal. Appl., 2017 (2017), 10 pages.
-
[26]
S. L. Qiu, J. M. Shen, On two problems concerning means, J. Hangzhou Inst. Electron. Eng., 17 (1997), 1–7.
-
[27]
Y.-F. Qiu, M.-K. Wang, Y.-M. Chu, G.-D. Wang, Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean, J. Math. Inequal., 5 (2011), 301–306.
-
[28]
G. H. Toader, Some mean values related to the arithmetic-geometric mean, J. Math. Anal. Appl., 218 (1998), 358–368.
-
[29]
M. Vuorinen, Hypergeometric functions in geometric function theory , Special Functions and Differential Equations, 119–126 (1998)
-
[30]
M.-K. Wang, Y.-M. Chu , Asymptotical bounds for complete elliptic integrals of the second kind, J. Math. Anal. Appl., 402 (2013), 119–126.
-
[31]
M.-K. Wang, Y.-M. Chu, Refinenemts of transformation inequalities for zero-balanced hypergeometric functions, Acta Math. Sci., 37 (2017), 607–622.
-
[32]
M.-K. Wang, Y.-M. Chu, Y.-F. Qiu, S.-L. Qiu , An optimal power mean inequality for the complete elliptic integrals, Appl. Math. Lett., 24 (2011), 887–890.
-
[33]
M.-K. Wang, Y.-M. Li, Y.-M. Chu, Inequalities and infinite product formula for Ramanujan generalized modular equation function, Ramanujan J., 2017 (2017 ), 12 pages.
-
[34]
M.-K. Wang, Y.-F. Qiu, Y.-M. Chu, Sharp bounds for Seiffert means in terms of Lehmer means, J. Math. Inequal., 4 (2010), 581–586.
-
[35]
G.-D. Wang, X.-H. Zhang, Y.-M. Chu , A power mean inequality for the Grötzsch ring function, Math. Inequal. Appl., 14 (2011), 833–837.
-
[36]
W.-F. Xia, Y.-M. Chu, Optimal inequalities between Neuman- Sándor, centroidal and harmonic means, J. Math. Inequal., 7 (2013), 593–600.
-
[37]
W.-F. Xia, Y.-M. Chu, G.-D. Wang, The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means, Abstr. Appl. Anal., 2010 (2010), 9 pages.
-
[38]
W.-F. Xia, W. Janous, Y.-M. Chu, The optimal convex combination bounds of arithmetic and harmonic means in terms of power mean, J. Math. Inequal., 6 (2012), 241–248.
-
[39]
Z.-H. Yang, Y.-M. Chu, A monotonicity property involving the generalized elliptic integral of the first kind, Math. Inequal. Appl., 20 (2017), 729–735.
-
[40]
Z.-H. Yang, W.-M. Qian, Y.-M. Chu, W. Zhang , Monotonicity rule for the quotient of two functions and its application, J. Inequal. Appl., 2017 (2017 ), 13 pages.
-
[41]
T.-H. Zhao, Y.-M. Chu, W. Zhang , Optimal inequalities for bounding Toader mean by arithmetic and quadratic means, J. Inequal. Appl., 2017 (2017 ), 10 pages.