Almost \(e^*\)-continuous functions and their characterizations
-
1877
Downloads
-
3333
Views
Authors
Burcu Sünbül Ayhan
- Faculty of Science, Department of Mathematics, Mugla Sitki Kocman University, 48000 Mentese-Mugla, Turkey.
Murad Özkoç
- Faculty of Science, Department of Mathematics, Mugla Sitki Kocman University, 48000 Mentese-Mugla, Italy.
Abstract
The main goal of this paper is to introduce and investigate a new class of functions called almost
\(e^*\)-continuous functions containing the class of almost e-continuous functions defined by Özkoçand
Kına. Several characterizations concerning almost \(e^*\)-continuous functions are obtained. Furthermore,
we investigate the relationships between almost \(e^*\)-continuous functions and separation axioms
and almost \(e^*\)-closedness of graphs of functions.
Share and Cite
ISRP Style
Burcu Sünbül Ayhan, Murad Özkoç, Almost \(e^*\)-continuous functions and their characterizations, Journal of Nonlinear Sciences and Applications, 9 (2016), no. 12, 6408--6423
AMA Style
Ayhan Burcu Sünbül, Özkoç Murad, Almost \(e^*\)-continuous functions and their characterizations. J. Nonlinear Sci. Appl. (2016); 9(12):6408--6423
Chicago/Turabian Style
Ayhan, Burcu Sünbül, Özkoç, Murad. "Almost \(e^*\)-continuous functions and their characterizations." Journal of Nonlinear Sciences and Applications, 9, no. 12 (2016): 6408--6423
Keywords
- \(e^*\)-open
- \(e^*\)-continuity
- almost \(e^*\)-continuity
- weakly \(e^*\)-continuity
- faintly \(e^*\)-continuity
- \(e^*\)-closed graph.
MSC
References
-
[1]
D. Andrijević, On b-open sets, Mat. Vesnik, 48 (1996), 59--64
-
[2]
E. Ekici, New forms of contra-continuity, Carpathian J. Math., 24 (2008), 37--45
-
[3]
E. Ekici, On a-open sets,\( A^*\)-sets and decompositions of continuity and super-continuity, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 51 (2008), 39--51
-
[4]
E. Ekici, On e-open sets, \(DP^*\)-sets and \(DPE^*\)-sets and decompositions of continuity, Arab. J. Sci. Eng. Sect. A Sci., 33 (2008), 269--282
-
[5]
E. Ekici, On \(e^*\)-open sets and \((D; S)^*\)-sets, Math. Morav., 13 (2009), 29--36
-
[6]
E. Ekici, Some weak forms of \(\delta\)-continuity and \(e^*\)-first-countable spaces, (submitted), (),
-
[7]
N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36--41
-
[8]
A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47--53
-
[9]
O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961--970
-
[10]
T. Noiri, Almost quasi-continuous functions, Bull. Inst. Math. Acad. Sinica, 18 (1990), 321--332
-
[11]
T. Noiri, V. Popa, On almost \(\beta\)-continuous functions, Acta Math. Hungar., 79 (1998), 329--339
-
[12]
M. Özkoç, H. Kına, On almost e-continuous functions, (submitted), (),
-
[13]
J. H. Park, B. Y. Lee, M. J. Son, On \(\delta\)-semiopen sets in topological space, J. Indian Acad. Math., 19 (1997), 59--67
-
[14]
S. Raychaudhuri, M. N. Mukherjee, On \(\delta\)-almost continuity and \(\delta\)-preopen sets, Bull. Inst. Math. Acad. Sinica, 21 (1993), 357--366
-
[15]
U. Şengül, On almost b-continuous functions, Int. J. Contemp. Math. Sci., 3 (2008), 1469--1480
-
[16]
M. K. Singal, S. Prabha Arya, On almost-regular spaces, Glasnik Mat. Ser. III, 4 (1969), 89--99
-
[17]
M. K. Singal, A. R. Singal, Almost-continuous mappings, Yokohama Math. J., 16 (1968), 63--73
-
[18]
M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 375--381
-
[19]
S. S. Thakur, P. Paik, Almost \(\alpha\)-continuous mappings, J. Sci. Res., 9 (1987), 37--40
-
[20]
N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103--118