Almost \(e^*\)continuous functions and their characterizations

1782
Downloads

3062
Views
Authors
Burcu Sünbül Ayhan
 Faculty of Science, Department of Mathematics, Mugla Sitki Kocman University, 48000 MenteseMugla, Turkey.
Murad Özkoç
 Faculty of Science, Department of Mathematics, Mugla Sitki Kocman University, 48000 MenteseMugla, Italy.
Abstract
The main goal of this paper is to introduce and investigate a new class of functions called almost
\(e^*\)continuous functions containing the class of almost econtinuous functions defined by Özkoçand
Kına. Several characterizations concerning almost \(e^*\)continuous functions are obtained. Furthermore,
we investigate the relationships between almost \(e^*\)continuous functions and separation axioms
and almost \(e^*\)closedness of graphs of functions.
Share and Cite
ISRP Style
Burcu Sünbül Ayhan, Murad Özkoç, Almost \(e^*\)continuous functions and their characterizations, Journal of Nonlinear Sciences and Applications, 9 (2016), no. 12, 64086423
AMA Style
Ayhan Burcu Sünbül, Özkoç Murad, Almost \(e^*\)continuous functions and their characterizations. J. Nonlinear Sci. Appl. (2016); 9(12):64086423
Chicago/Turabian Style
Ayhan, Burcu Sünbül, Özkoç, Murad. "Almost \(e^*\)continuous functions and their characterizations." Journal of Nonlinear Sciences and Applications, 9, no. 12 (2016): 64086423
Keywords
 \(e^*\)open
 \(e^*\)continuity
 almost \(e^*\)continuity
 weakly \(e^*\)continuity
 faintly \(e^*\)continuity
 \(e^*\)closed graph.
MSC
References

[1]
D. Andrijević, On bopen sets, Mat. Vesnik, 48 (1996), 5964

[2]
E. Ekici, New forms of contracontinuity, Carpathian J. Math., 24 (2008), 3745

[3]
E. Ekici, On aopen sets,\( A^*\)sets and decompositions of continuity and supercontinuity, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 51 (2008), 3951

[4]
E. Ekici, On eopen sets, \(DP^*\)sets and \(DPE^*\)sets and decompositions of continuity, Arab. J. Sci. Eng. Sect. A Sci., 33 (2008), 269282

[5]
E. Ekici, On \(e^*\)open sets and \((D; S)^*\)sets, Math. Morav., 13 (2009), 2936

[6]
E. Ekici, Some weak forms of \(\delta\)continuity and \(e^*\)firstcountable spaces, (submitted), (),

[7]
N. Levine, Semiopen sets and semicontinuity in topological spaces, Amer. Math. Monthly, 70 (1963), 3641

[8]
A. S. Mashhour, M. E. Abd ElMonsef, S. N. ElDeeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 4753

[9]
O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961970

[10]
T. Noiri, Almost quasicontinuous functions, Bull. Inst. Math. Acad. Sinica, 18 (1990), 321332

[11]
T. Noiri, V. Popa, On almost \(\beta\)continuous functions, Acta Math. Hungar., 79 (1998), 329339

[12]
M. Özkoç, H. Kına, On almost econtinuous functions, (submitted), (),

[13]
J. H. Park, B. Y. Lee, M. J. Son, On \(\delta\)semiopen sets in topological space, J. Indian Acad. Math., 19 (1997), 5967

[14]
S. Raychaudhuri, M. N. Mukherjee, On \(\delta\)almost continuity and \(\delta\)preopen sets, Bull. Inst. Math. Acad. Sinica, 21 (1993), 357366

[15]
U. Şengül, On almost bcontinuous functions, Int. J. Contemp. Math. Sci., 3 (2008), 14691480

[16]
M. K. Singal, S. Prabha Arya, On almostregular spaces, Glasnik Mat. Ser. III, 4 (1969), 8999

[17]
M. K. Singal, A. R. Singal, Almostcontinuous mappings, Yokohama Math. J., 16 (1968), 6373

[18]
M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 375381

[19]
S. S. Thakur, P. Paik, Almost \(\alpha\)continuous mappings, J. Sci. Res., 9 (1987), 3740

[20]
N. V. Veličko, Hclosed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103118