A fixed point approach to the stability of an AQCQ-functional equation in RN-spaces
-
1266
Downloads
-
1942
Views
Authors
Choonkil Park
- Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.
Dong Yun Shin
- Department of Mathematics, University of Seoul, Seoul 130-743, Republic of Korea.
Sungjin Lee
- Department of Mathematics, Daejin University, Kyeonggi 487-711, Republic of Korea.
Abstract
Using the fixed point method, we prove the Hyers-Ulam stability of the following additive-quadratic-
cubic-quartic functional equation
\[f(x + 2y) + f(x - 2y) = 4f(x + y) + 4f(x - y) - 6f(x) + f(2y) + f(-2y) - 4f(y) - 4f(-y)\]
in random normed spaces.
Share and Cite
ISRP Style
Choonkil Park, Dong Yun Shin, Sungjin Lee, A fixed point approach to the stability of an AQCQ-functional equation in RN-spaces, Journal of Nonlinear Sciences and Applications, 9 (2016), no. 4, 1787--1806
AMA Style
Park Choonkil, Shin Dong Yun, Lee Sungjin, A fixed point approach to the stability of an AQCQ-functional equation in RN-spaces. J. Nonlinear Sci. Appl. (2016); 9(4):1787--1806
Chicago/Turabian Style
Park, Choonkil, Shin, Dong Yun, Lee, Sungjin. "A fixed point approach to the stability of an AQCQ-functional equation in RN-spaces." Journal of Nonlinear Sciences and Applications, 9, no. 4 (2016): 1787--1806
Keywords
- Random normed space
- fixed point
- Hyers-Ulam stability
- additive-quadratic-cubic-quartic functional equation.
MSC
References
-
[1]
J. Aczel, J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, Cambridge (1989)
-
[2]
T. Aoki , On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
-
[3]
E. Baktash, Y. J. Cho, M. Jalili, R. Saadati, S. M. Vaezpour, On the stability of cubic mappings and quartic mappings in random normed spaces, J. Inequal. Appl., 2008 (2008), 11 pages.
-
[4]
L. C. Barros, R. C. Bassanezi, P. A. Tonelli , Fuzzy modelling in population dynamics, Ecol. Model., 128 (2000), 27-33.
-
[5]
D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57 (1951), 223-237.
-
[6]
L. Cădariu, V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 2003 (2003), 7 pages.
-
[7]
L. Cădariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346 (2004), 43-52.
-
[8]
L. Cădariu, V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable , Fixed Point Theory Appl., 2008 (2008), 15 pages.
-
[9]
S. S. Chang, Y. J. Cho, S. M. Kang, Nonlinear Operator Theory in Probabilistic Metric Spaces, Nova Science Publishers Inc. , New York (2001)
-
[10]
P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76-86.
-
[11]
J. K. Chung, P. K. Sahoo, On the general solution of a quartic functional equation, Bull. Korean Math. Soc., 40 (2003), 565-576.
-
[12]
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64.
-
[13]
P. Czerwik , Functional Equations and Inequalities in Several Variables , World Scientific Publishing Company, New Jersey, Hong Kong , Singapore and London (2002)
-
[14]
J. Diaz, B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309.
-
[15]
M. Eshaghi Gordji, S. Abbaszadeh, C. Park, On the stability of a generalized quadratic and quartic type functional equation in quasi-Banach spaces, , (preprint),
-
[16]
M. Eshaghi Gordji, S. Kaboli-Gharetapeh, C. Park, S. Zolfaghri, Stability of an additive-cubic-quartic functional equation, , (preprint),
-
[17]
M. Eshaghi Gordji, J. M. Rassias, M. Bavand Savadkouhi, Stability of a mixed type additive and quadratic functional equation in random normed spaces, , (preprint),
-
[18]
M. Eshaghi Gordji, J. M. Rassias, M. Bavand Savadkouhi, Approximation of the quadratic and cubic functional equation in RN-spaces, , (preprint),
-
[19]
A. L. Fradkov, R. J. Evans, Control of chaos: Methods and applications in engineering, Chaos, Solitons and Fractals, 29 (2005), 33-56.
-
[20]
Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431-434.
-
[21]
P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
-
[22]
R. Giles, A computer program for fuzzy reasoning, Fuzzy Sets and Systems, 4 (1980), 221-234.
-
[23]
O. Hadžić, E. Pap , Fixed Point Theory in PM Spaces, Kluwer Academic Publishers, Dordrecht (2001)
-
[24]
O. Hadžić, E. Pap, M. Budincević, Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces, Kybernetica, 38 (2002), 363-381.
-
[25]
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224.
-
[26]
D. H. Hyers, G. Isac, T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser , Basel (1998)
-
[27]
G. Isac, T. M. Rassias, Stability of \(\psi\)-additive mappings: Applications to nonlinear analysis , Internat. J. Math. Math. Sci., 19 (1996), 219-228.
-
[28]
K. Jun, H. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation , J. Math. Anal. Appl., 274 (2002), 867-878.
-
[29]
S. Jung , Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc., Palm Harbor, Florida (2001)
-
[30]
P. Kannappan , Quadratic functional equation and inner product spaces, Results Math., 27 (1995), 368-372.
-
[31]
H. Kim, On the stability problem for a mixed type of quartic and quadratic functional equation, J. Math. Anal. Appl., 324 (2006), 358-372.
-
[32]
D. Miheţ , The probabilistic stability for a functional equation in a single variable, Acta Math. Hungar., 123 (2009), 249-256.
-
[33]
D. Miheţ , The fixed point method for fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, 160 (2009), 1663-1667.
-
[34]
D. Miheţ, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567-572.
-
[35]
A. K. Mirmostafaee, M. Mirzavaziri, M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, 159 (2008), 730-738.
-
[36]
A. K. Mirmostafaee, M. S. Moslehian , Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, 159 (2008), 720-729.
-
[37]
A. K. Mirmostafaee, M. S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sci., 178 (2008), 3791-3798.
-
[38]
M. Mirzavaziri, M. S. Moslehian, A fixed point approach to stability of a quadratic equation , Bull. Braz. Math. Soc., 37 (2006), 361-376.
-
[39]
M. Mursaleen, S. A. Mohiuddine, Nonlinear operators between intuitionistic fuzzy normed spaces and Fréchet differentiation, Chaos, Solitions and Fractals, (to appear),
-
[40]
C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory Appl., 2007 (2007), 15 pages.
-
[41]
C. Park , Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach , Fixed Point Theory Appl., 2008 (2008), 9 pages.
-
[42]
W. Park, J. Bae , On a bi-quadratic functional equation and its stability , Nonlinear Anal., 62 (2005), 643-654.
-
[43]
V. Radu , The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003), 91-96.
-
[44]
T. M. Rassias, On the stability of the linear mapping in Banach spaces , Proc. Amer. Math. Soc., 72 (1978), 297-300.
-
[45]
T. M. Rassias, Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math., 39 (1990), 292-293.
-
[46]
T. M. Rassias , On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai, 43 (1998), 89-124.
-
[47]
T. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251 (2000), 264-284.
-
[48]
T. M. Rassias, On the stability of functional equations and a problem of Ulam , Acta Appl. Math., 62 (2000), 23-130.
-
[49]
T. M. Rassias, P. Šemrl , On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., 114 (1992), 989-993.
-
[50]
T. M. Rassias, P. Šemrl, On the Hyers-Ulam stability of linear mappings , J. Math. Anal. Appl., 173 (1993), 325-338.
-
[51]
T. M. Rassias, K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl., 228 (1998), 234-253.
-
[52]
B. Schweizer, A. Sklar , Probabilistic Metric Spaces , North-Holland, New York (1983)
-
[53]
A. N. Sherstnev , On the notion of a random normed space , (in Russian), Dokl. Akad. Nauk SSSR, 149 (1963), 280-283.
-
[54]
F. Skof , Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.
-
[55]
S. M. Ulam, A Collection of the Mathematical Problems , Interscience Publ., New York (1960)