Third Hankel determinant and Zalcman functional for a class of starlike functions with respect to symmetric points related with sine function

1116
Downloads

2426
Views
Authors
Muhammad Ghaffar Khan
 Institute of Numerical Sciences, Kohat University of Science and Technology, Kohat, Pakistan.
Bakhtiar Ahmad
 AhmadGovt. Degree College Mardan, 23200 Mardan, Pakistan.
Gangadharan Murugusundaramoorthy
 Department of Mathematics, School of Advanced Sciences, Vellore Institute Technology University Vellore  632014, India.
Wali Khan Mashwani
 Institute of Numerical Sciences, Kohat University of Science and Technology, Kohat, Pakistan.
Sibel Yalçin
 Department of Mathematics, Faculty of Arts and Sciences, Bursa Uludag University, 16059, Bursa, Turkey.
Timilehin Gideon Shaba
 Department of Mathematics, Physical Sciences, University of Ilorin, Nigeria.
Zabidin Salleh
 Department of Mathematics, Faculty of Ocean Engineering Technology and Informatics, University Malaysia Terengganu, 21030 Kuala Nerus, Terenggunu, Malaysia.
Abstract
In this article we define a class of starlike functions with respect to
symmetric points in the domain of sine function. Also, we investigate
coefficients bounds and upper bounds for the third order Hankel determinant for
this defined class. We also evaluate the Zalcman functional \(a_{3}^{2}a_{5}\). Specializing the parameters, we improve Zalcman
functional for the class of starlike functions.
Share and Cite
ISRP Style
Muhammad Ghaffar Khan, Bakhtiar Ahmad, Gangadharan Murugusundaramoorthy, Wali Khan Mashwani, Sibel Yalçin, Timilehin Gideon Shaba, Zabidin Salleh, Third Hankel determinant and Zalcman functional for a class of starlike functions with respect to symmetric points related with sine function, Journal of Mathematics and Computer Science, 25 (2022), no. 1, 2936
AMA Style
Khan Muhammad Ghaffar, Ahmad Bakhtiar, Murugusundaramoorthy Gangadharan, Mashwani Wali Khan, Yalçin Sibel, Shaba Timilehin Gideon, Salleh Zabidin, Third Hankel determinant and Zalcman functional for a class of starlike functions with respect to symmetric points related with sine function. J Math Comput SCIJM. (2022); 25(1):2936
Chicago/Turabian Style
Khan, Muhammad Ghaffar, Ahmad, Bakhtiar, Murugusundaramoorthy, Gangadharan, Mashwani, Wali Khan, Yalçin, Sibel, Shaba, Timilehin Gideon, Salleh, Zabidin. "Third Hankel determinant and Zalcman functional for a class of starlike functions with respect to symmetric points related with sine function." Journal of Mathematics and Computer Science, 25, no. 1 (2022): 2936
Keywords
 Analytic functions
 subordinations
 sine function
 Hankel determinant
 Zalcman functional
MSC
References

[1]
M. Arif, M. Raza, H. Tang, S. Hussain, H. Khan, Hankel determinant of order three for familiar subsets of analytic functions related with sine function, Open Math., 17 (2019), 16151630

[2]
K. O. Babalola, On H3 (1) Hankel determinant for some classes of univalent functions, Inequal. Theory Appl., 6 (2007), 17

[3]
D. Bansal, J. Sokol, Zalcman conjecture for some subclass of analytic functions, J. Fract. Calc. Appl., 8 (2017), 15

[4]
J. E. Brown, A. Tsao, On the Zalcman conjecture for starlike and typically real functions, Math. Z., 191 (1986), 467474

[5]
N. E. Cho, B. Kowalczyk, O. S. Kwon , A. Lecko, J. Sim, Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal., 11 (2017), 429439

[6]
N. E. Cho, V. Kumar, S. S. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the Sine function, Bull. Iranian Math. Soc., 45 (2019), 213232

[7]
H. O. Guney, G. Murugusundaramoorthy, H. M. Srivastava, The second hankel determinant for a certain class of biclosetoconvex function, Results Math.,, 74 (2019), 13 pages

[8]
W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc, 18 (1968), 7794

[9]
A. Jangteng, S. A. Halim, M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7 (2006), 15

[10]
F. R. Keogh, E. P. Merkes, Coefficient inequality for certain subclasses of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 812

[11]
M. G. Khan, B. Ahmad, G. Muraugusundaramoorthy, R. Chinram, W. K. Mashwani, Applications of Modified Sigmoid Functions to a Class of Starlike Functions, J. Funct. Spaces, 2020 (2020), 8 pages

[12]
M. G. Khan, B. Ahmad, J. Sokol, Z. Muhammad, W. K. Mashwani, R. Chinram, P. Petchkaew, Coefficient problems in a class of functions with bounded turning associated with Sine function, Eur. J. Pure Appl. Math., 14 (2021), 5364

[13]
A. Lecko, Y. J. Sim, B. Smiarowska, The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2, Complex Anal. Oper. Theory, 13 (2019), 22312238

[14]
R. J. Libera, E. J. Złotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87 (1983), 251257

[15]
W. C. Ma, The Zalcman conjecture for closetoconvex functions, Proc. Amer. Math. Soc., 104 (1988), 741744

[16]
S. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor, S. M. J. Riaz, Some coefficient inequalities of qstarlike functions associated with conic domain defined by qderivative, J. Funct. Spaces, 2018 (2018), 113

[17]
S. Mahmood, I. Khan, H. M. Srivastava, S. N. Malik, Inclusion relations for certain families of integral operators associated with conic regions, J. Inequal. Appl., 59 (2019), 11 pages

[18]
S. Mahmood, H. M. Srivastava, N. Khan, Q. Z. Ahmad, B. Khan, I. Ali, Upper bound of the third Hankel determinant for a subclass of qstarlike functions, Symmetry, 11 (2019), 113

[19]
S. Mahmood, H. M. Srivastava, S. N. Malik, Some subclasses of uniformly univalent functions with respect to symmetric points, Symmetry, 11 (2019), 14 pages

[20]
J. W. Noonan, D. K. Thomas, On the second Hankel determinant of areally mean pvalent functions, Trans. Amer. Math. Soc., 223 (1976), 337346

[21]
H. Orhan, N. Magesh, J. Yamini, Bounds for the second Hankel determinant of certain biunivalent functions, Turkish J. Math., 40 (2016), 679687

[22]
C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc., 41 (1966), 111122

[23]
C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika, 14 (1967), 108112

[24]
C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Gottingen (1975)

[25]
R. K. Raina, J. Sokoł, On coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat., 44 (2015), 14271433

[26]
V. Ravichandran, S. Verma, Bound for the fifth coefficient of certain starlike functions, C. R. Math. Acad. Sci. Paris, 353 (2015), 505510

[27]
M. Raza, S. N. Malik, Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl., 2013 (2013), 8 pages

[28]
K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 7275

[29]
M. Shafiq, H. M. Srivastava, N. Khan, Q. Z. Ahmad, M. Darus, S. Kiran, An upper bound of the third Hankel determinant for a subclass of qstarlike functions associated with kFibonacci numbers, Symmetry, 12 (2020), 117

[30]
L. Shi, M. G. Khan, B. Ahmad, Some geometric properties of a family of analytic functions involving a generalized qoperator, Symmetry,, 12 (2020), 11 pages

[31]
H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of qstarlike functions associated with a general conic domain, Mathematics, 7 (2019), 15 pages

[32]
H. M. Srivastava, Q. Z. Ahmad, M. Darus, N. Khan, B. Khan, N. Zaman, H. H. Shah, Upper bound of the third Hankel determinant for a subclass of closetoconvex functions associated with the lemniscate of Bernoulli, Mathematics, 7 (2019), 10 pages

[33]
H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for qstarlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407425

[34]
H. M. Srivastava, B. Khan, N. Khan, M. Tahir, S. Ahmad, N. Khan, Upper bound of the third Hankel determinant for a subclass of qstarlike functions associated with the qexponential function, Bull. Sci. Math., 167 (2021), 16 pages

[35]
P. Zaprawa, Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math., 14 (2017), 10 pages