A \((p,q)\)-analogue of Qi-type formula for \(r\)-Dowling numbers
Volume 24, Issue 3, pp 273--286
http://dx.doi.org/10.22436/jmcs.024.03.08
Publication Date: March 25, 2021
Submission Date: January 16, 2021
Revision Date: January 31, 2021
Accteptance Date: February 24, 2021
-
1152
Downloads
-
3198
Views
Authors
Roberto B. Corcino
- Research Institute for Computational Mathematics and Physics, Cebu Normal University, Cebu City 6000, Philippines.
Mary Ann Ritzell P. Vega
- Department of Mathematics, Mindanao State University, Iligan Institute of Technology, Iligan City 9200, Philippines.
Amerah M. Dibagulun
- Department of Mathematics, Mindanao State University, Main Campus, Marawi City 9700, Philippines.
Abstract
In this paper, \((p,q)\)-analogues of \(r\)-Whitney numbers of the first and second kinds are defined using horizontal generating functions. Several fundamental properties such as orthogonality and inverse relations, an explicit formula, and a kind of exponential generating function are obtained. Moreover, a \((p,q)\)-analogue of \(r\)-Whitney-Lah numbers is also defined in terms of a horizontal generating function, where necessary properties are obtained. These properties help develop a \((p,q)\)-analogue of the \(r\)-Dowling numbers, particularly, a \((p,q)\)-analogue of a Qi-type formula.
Share and Cite
ISRP Style
Roberto B. Corcino, Mary Ann Ritzell P. Vega, Amerah M. Dibagulun, A \((p,q)\)-analogue of Qi-type formula for \(r\)-Dowling numbers, Journal of Mathematics and Computer Science, 24 (2022), no. 3, 273--286
AMA Style
Corcino Roberto B., Vega Mary Ann Ritzell P., Dibagulun Amerah M., A \((p,q)\)-analogue of Qi-type formula for \(r\)-Dowling numbers. J Math Comput SCI-JM. (2022); 24(3):273--286
Chicago/Turabian Style
Corcino, Roberto B., Vega, Mary Ann Ritzell P., Dibagulun, Amerah M.. "A \((p,q)\)-analogue of Qi-type formula for \(r\)-Dowling numbers." Journal of Mathematics and Computer Science, 24, no. 3 (2022): 273--286
Keywords
- \(r\)-Whitney numbers
- \(r\)-Whitney-Lah numbers
- \(r\)-Dowling numbers
- generating function
- Qi-type formula
MSC
References
-
[1]
W. M. Bent-Usman, A. M. Dibagulun, M. M. Mangontarum, C. B. Montero, An alternative q-analogue of the Rucinski-Voigt numbers, Commun. Korean Math. Soc., 33 (2018), 1055--1074
-
[2]
L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J., 15 (1948), 987--1000
-
[3]
G.-S. Cheon, J.-H. Jung, r-Whitney numbers of Dowling lattices, Discrete Math., 312 (2012), 2337--2348
-
[4]
J. Cigler, A new q-analog of Stirling numbers, Osterreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 201 (1992), 97--109
-
[5]
J. A. D. Cillar, R. B. Corcino, A q-analogue of Qi formula for r-Dowling numbers, Commun. Korean Math. Soc., 35 (2020), 21--41
-
[6]
L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht (1974)
-
[7]
K. Conrad, A q-analogue of Mahler expansions, I, Adv. Math., 153 (2000), 185--230
-
[8]
R. B. Corcino, The (r, β)-Stirling numbers, Mindanao Forum, 14 (1999), 91--99
-
[9]
R. B. Corcino, On p, q-binomial coefficients, Integers, 8 (2008), 16 pages
-
[10]
R. B. Corcino, C. B. Corcino, On the Maximum of the Generalized Stirling numbers, Util. Math., 86 (2011), 241--256
-
[11]
R. B. Corcino, M. J. Latayada, M. A. R. P. Vega, Hankel transform of (q, r)-Dowling numbers, Eur. J. Pure Appl. Math., 12 (2019), 279--293
-
[12]
R. B. Corcino, C. B. Montero, A p, q-analogue of the generalized Stirling numbers, JP J. Algebra Number Theory Appl., 15 (2009), 137--155
-
[13]
R. B. Corcino, C. B. Montero, A q-analogue of Rucinski-Voigt numbers, ISRN Discrete Math., 2012 (2012), 18 pages
-
[14]
R. B. Corcino, C. B. Montero, On p, q-difference operator, J. Korean Math. Soc., 49 (2012), 537--547
-
[15]
R. B. Corcino, J. M. Ontolan, G. J. S. Rama, Hankel transform of the second form (q, r)-Dowling numbers, Eur. J. Pure Appl. Math., 12 (2019), 1676--1688
-
[16]
R. B. Corcino, J. M. Ontolan, J. Canete, M. J. R. Latayada, A q-analogue of r-Whitney numbers of the second kind and its Hankel transform, J. Math. Comput. Sci., 21 (2020), 258--272
-
[17]
R. Ehrenborg, Determinants involving q-Stirling numbers, Adv. in Appl. Math., 31 (2003), 630--642
-
[18]
H. W. Gould, The q-Stirling numbers of first and second kinds, Duke Math. J., 28 (1961), 281--289
-
[19]
L. C. Hsu, P. J.-S. Shiue, A Unified Approach to Generalized Stirling Numbers, Adv. in Appl. Math., 20 (1998), 366--384
-
[20]
M. M. Mangontarum, The translated Whiteny-Lah numbers:generalizations and q-analogues, Notes Number Theory Discrete Math., 26 (2020), 80--92
-
[21]
M. M. Mangontarum, O. I. Cauntongan, A. P. Macodi-Ringia, The noncentral version of the Whitney numbers: a comprehensive study, Int. J. Math. Math. Sci., 2016 (2016), 16 pages
-
[22]
M. M. Mangontarum, J. Katriel, On q-boson operators and q-analogues of the r-Whitney and r-Dowling numbers, J. Integer Seq., 18 (2015), 23 pages
-
[23]
I. Mezo, A New Formula for the Bernoulli Polynomials, Results Math., 58 (2010), 329--335
-
[24]
F. Qi, An explicit formula for the Bell numbers in terms of the Lah and Stirling numbers, Mediterr. J. Math., 13 (2016), 2795--2800
-
[25]
J. B. Remmel, M. L. Wachs, Rook theory, generalized Stirling numbers and (p, q)-analogues, Electron. J. Combin., 11 (2004), 48 pages
-
[26]
A. Rucinski, B. Voigt, A local limit theorem for generalized Stirling numbers, Rev. Roumaine Math. Pures Appl., 35 (1990), 161--172