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Abstract

In this paper, (p,q)-analogues of r-Whitney numbers of the first and second kinds are defined using horizontal generating
functions. Several fundamental properties such as orthogonality and inverse relations, an explicit formula, and a kind of
exponential generating function are obtained. Moreover, a (p,q)-analogue of r-Whitney-Lah numbers is also defined in terms of
a horizontal generating function, where necessary properties are obtained. These properties help develop a (p,q)-analogue of
the r-Dowling numbers, particularly, a (p,q)-analogue of a Qi-type formula.
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1. Introduction

The r-Whitney numbers of the first kind and second kind, denoted by wm,r(n,k) and Wm,r(n,k),
respectively, were defined by Mező [23] as coefficients in the expansion of the following relations:

mnxn =

n∑
k=0

wm,r(n,k)(mx+ r)k (1.1)

and

(mx+ r)n =

n∑
k=0

mkWm,r(n,k)xk, (1.2)

where xk = x(x− 1)(x− 2) · · · (x− k+ 1), (k = 0, 1, 2, . . . ,n) denotes the falling factorial of x of order k.
Combinatorial properties of these numbers can be seen in [10, 23]. Now, since

mntn = mnt(t− 1)(t− 2) · · · (t− (n− 1))
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= (mt)(mt−m)(mt− 2m) · · · (mt− (n− 1)m) =

n−1∏
j=0

(mt− jm) = (mt|m)n,

then (1.1) and (1.2) can be re-expressed as follows:

(mt|m)n =

n∑
k=0

wm,r(n,k)(mt+ r)k

and

(mt+ r)n =

n∑
k=0

Wm,r(n,k)(mt|m)k, (1.3)

where x is replaced with t. The (r,β)-Stirling numbers, denoted by
〈
n
m

〉
β,r, were defined by Corcino [8]

as

xn =

n∑
k=0

〈
n

m

〉
β,r

(x− r|β)k,

where

(x− r|β)k =

k−1∏
i=0

(x− r− iβ)

is the generalized factorial of x− r of increment β, with r and β may be real or complex parameters. This
can be expressed as

(βt+ r)n =

n∑
k=0

〈
n

m

〉
β,r

(βt|β)k,

when x is replaced by βt+ r. Notice that when m = β in (1.3), it is clear to see that

Wβ,r(n,k) =
〈
n

k

〉
β,r

.

Other equivalent numbers may be attributed to Ruciński and Voigt [26] and Mangontarum et al. [21].
Now, the term q-analogue refers to a mathematical expression involving a parameter q which gener-

alizes a known identity and reduces back to its classical form as q→ 1. The q-integer n

[n]q =
qn − 1
q− 1

,

the q-factorial of n

[n]q! =
n∏
j=1

[j]q,

the q-factorial of n of order k

[n]k,q =

k−1∏
j=0

qn−j − 1
q− 1

,

and the q-binomial coefficient [
n

k

]
q

=

k∏
j=1

qn−j+1 − 1
qj − 1

=
[n]q!

[k]q![n− k]q!
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are q-analogues of the integer n, factorial n!, nk, and
(
n
k

)
, respectively, since the following limits hold:

lim
q→1

[n]q = n, lim
q→1

[n]q! = n!, lim
q→1

[n]k,q = nk, lim
q→1

[
n

k

]
q

=

(
n

k

)
.

On the other hand, a natural extension of q-analogue is called (p,q)-analogue which generalizes a known
q-analogue and reduces it to the said q-analogue when p = 1. The following are examples of (p,q)-
analogues:

[n]p,q =
pn − qn

p− q
, [n]k,p,q =

k−1∏
j=0

pn−j − qn−j

p− q
, [n]p,q! =

n∏
j=1

[j]p,q, (1.4)

and [
n

k

]
p,q

=

k∏
j=1

pn−j+1 − qn−j+1

pj − qj
, (1.5)

where p 6= q. Notice that when p = 1, equations (1.4) and (1.5) coincide with the q-analogues presented
earlier. That is,

[n]1,q = [n]q, [n]k,1,q = [n]k,q, [n]1,q! = [n]q!,
[
n

k

]
1,q

=

[
n

k

]
q

.

The above-listed (p,q)-analogues are referred to as (p,q)-integer n, (p,q)-falling factorial of n of order k,
(p,q)-factorial of n and (p,q)-binomial coefficient, respectively. Also, it is verified that the (p,q)-binomial
coefficient satisfies [

n

k

]
p,q

=
[n]k,p,q

[k]p,q!
=

[n]p,q!
[k]p,q![n− k]p,q!

.

It is known that the transitions of a given sequence of numbers into their q and (p,q)-analogues are
not unique. For instance, the q-analogues of the classical Stirling numbers are defined using different
motivations by Carlitz [2], Gould [18], Cigler [4], and Ehrenborg [17]. For the q-analogues of r-Whitney-
type numbers, some notable works are that of Corcino et al. [16], Corcino and Montero [13], Bent-Usman
et al. [1], and Mangontarum and Katriel [22]. On the other hand, the (p,q)-analogues of the generalized
Stirling numbers by Hsu and Shiue [19] were done separately by Remmel and Wachs [25] and Corcino
and Montero [12].

More precisely, Corcino and Montero [12] defined a pair of (p,q)-analogues of the generalized Stirling
numbers {σ1[n,k]pq,σ2[n,k]pq} in terms of the (p,q)-exponential-type Stirling number pair

{S1[n,k]pq,S2[n,k]pq} = {S[n,k : α̂, β̂, γ̂]pq,S[n,k; β̂, α̂, −̂γ]pq},

as follows:

σ1[n,k]pq = σ1[n,k;α,β,γ]pq := S[n,k; α̂, β̂, γ̂]pq(p− q)k−n,

σ2[n,k]pq = σ2[n,k;α,β,γ]pq := S[n,k; β̂, α̂, −̂γ]pq(p− q)k−n,

where the pair {S1[n,k]pq,S2[n,k]pq} are defined by the relations:

[t|α̂]pqn =

n∑
k=0

S1[n,k]pq[t− γ̂|β̂]
pq
k , and [t|β̂]pqn =

n∑
k=0

S2[n,k]pq[t+ γ̂|α̂]
pq
k ,

with α,β and γ may be real or complex numbers and

[t|α̂]pqn =

n−1∏
j=0

(t− α̂j), α̂j = pjα = qjα, α̂j = α̂, [t|α̂]pq0 = 1, [t|α̂]pq1 = t,
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the (p,q)-exponential factorial of t with power α. Several properties and some combinatorial interpreta-
tion in the context of A-tableau of this (p,q)-analogue were established in [12].

The results of this paper are organized as follows. In section 2, we will define (p,q)-analogues of the
r-Whitney numbers of the first and second kinds in terms of horizontal geenrating functions and obtain
combinatorial properties, some of which are important in the succeeding sections. In section 3, we will
define a (p,q)-analogue of r-Whitney-Lah numbers which can be expressed as sum of products of the
(p,q)-analogues in Section 2, and in section 4, we will define a (p,q)-analogue of the r-Dowling numbers
as the sum of the (p,q)-analogue of the r-Whitney numbers of the second kind. Using this notion, we
will establish a (p,q)-analogue of a Qi-type formula.

2. A (p,q)-analogue of r-Whitney numbers

Definition 2.1. For real numbers m and r, where m 6= 0, the (p,q)-analogues of r-Whitney numbers of
the first and second kind, denoted by Wm,r[n,k]p,q and wm,r[n,k]p,q, respectively, are defined by the
following relations:

[mt|m]np,q =

n∑
k=0

wm,r[n,k]p,q[mt+ r]
k
p,q, (2.1)

[mt+ r]np,q =

n∑
k=0

Wm,r[n,k]p,q[mt|m]kp,q, (2.2)

where

[t|m]np,q =

n−1∏
j=0

[t− jm]p,q.

Substituting (2.1) to (2.2) gives

[mt+ r]np,q =

n∑
k=0

Wm,r[n,k]p,q

k∑
j=0

wm,r[k, j]p,q[mt+ r]
j
p,q

=

n∑
k=0

k∑
j=0

Wm,r[n,k]p,qwm,r[k, j]p,q[mt+ r]
j
p,q.

Re-indexing the sums yield

[mt+ r]np,q =

n∑
j=0


n∑
k=j

Wm,r[n,k]p,qwm,r[k, j]p,q

 [mt+ r]jp,q.

Comparing the coefficients of [mt+ r]jp,q,
n∑
k=j

Wm,r[n,k]p,qwm,r[k, j]p,q = 1,

when j = n and
n∑
k=j

Wm,r[n,k]p,qwm,r[k, j]p,q = 0,

otherwise. On the other hand, substituting (2.2) to (2.1) gives

[mt|m]np,q =

n∑
k=0

wm,r[n,k]p,q

k∑
j=0

Wm,r[k, j]p,q[mt|m]
j
p,q
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=

n∑
k=0

k∑
j=0

wm,r[n,k]p,qWm,r[k, j]p,q[mt|m]
j
p,q.

Re-indexing the sums yield

[mt|m]np,q =

n∑
j=0


n∑
k=j

wm,r[n,k]p,qWm,r[k, j]p,q

 [mt|m]
j
p,q.

Comparing the coefficients of [mt|m]
j
p,q,

n∑
k=j

wm,r[n,k]p,qWm,r[k, j]p,q = 1,

when j = n and
n∑
k=j

wm,r[n,k]p,qWm,r[k, j]p,q = 0,

otherwise. Thus, we obtain the following theorem.

Theorem 2.2. The (p,q)-analogues of the r-Whitney numbers of the first and second kind satisfy the following
orthogonality relations:

n∑
k=j

Wm,r[n,k]p,qwm,r[k, j]p,q = δj,n (2.3)

and
n∑
k=j

wm,r[n,k]p,qWm,r[k, j]p,q = δj,n. (2.4)

The next theorem contains the inverse relations for wm,r[n,k]p.q and Wm,r[n,k]p.q which can be
proven using the orthogonality relations above.

Theorem 2.3. The inverse relations of the (p,q)-analogues of the r-Whitney numbers of the first and second kinds
are given by the following:

fn =

n∑
k=0

wm,r[n,k]p,qgk ⇐⇒ gn =

n∑
k=0

Wm,r[n,k]p,qfk (2.5)

and

fk =

∞∑
n=k

wm,r[n,k]p,qgn ⇐⇒ gk =

∞∑
n=k

Wm,r[n,k]p,qfn. (2.6)

Proof. To prove (2.5), suppose that

fn =

n∑
k=0

wm,r[n,k]p,qgk.

Then,

n∑
k=0

Wm,r[n,k]p,qfk =

n∑
k=0

Wm,r[n,k]p,q

k∑
j=0

wm,r[k, j]p,qgj =

n∑
j=0


n∑
k=j

Wm,r[n,k]p,qwm,r[k, j]p,q

gj.
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Applying the orthogonality relation in (2.4) in this equation,

n∑
k=0

Wm,r[n,k]p,qfk =

n∑
j=0

{
δj,n
}
gj.

Note that δj,n = 0 for n = 0, 1, 2, . . . ,n− 1, while δn,n = 1. Hence,

n∑
k=0

Wm,r[n,k]p,qfk = δn,ngn = gn.

Conversely, suppose

gn =

n∑
k=0

Wm,r[n,k]p,qfk.

Then,

n∑
k=0

wm,r[n,k]p,qgk =

n∑
k=0

wm,r[n,k]p,q

k∑
j=0

Wm,r[k, j]p,qfj =

n∑
j=0


n∑
k=j

wm,r[n,k]p,qWm,r[k, j]p,q

 fj.
By the orthogonality relation in (2.3) and the definition of the Kronecker’s delta δj,n,

n∑
k=0

wm,r[n,k]p,qgk =

n∑
j=0

{
δj,n
}
fj = δn,nfn = fn.

Now, to prove (2.6), suppose that

fk =

∞∑
n=k

wm,r[n,k]p,qgn

holds. Then combining this with the defining relation in (2.2),

∞∑
k=0

{ ∞∑
n=k

Wm,r[n,k]p,qfn

}
[mt|m]kp,q =

∞∑
n=0

{
n∑
k=0

Wm,r[n,k]p,q[mt|m]kp,q

}
fn

=

∞∑
n=0

{
[mt+ r]np,q

}
fn =

∞∑
n=0


∞∑
j=n

wm,r[j,n]p,qgj

 [mt+ r]np,q.

Re-indexing the sums and again using (2.2) gives

∞∑
k=0

{ ∞∑
n=k

Wm,r[n,k]p,qfn

}
[mt|m]kp,q =

∞∑
j=0

{
j∑
n=0

wm,r[j,n]p,q[mt+ r]
n
p,q

}
gj

=

∞∑
j=0

{
j∑
n=0

wm,r[j,n]p,q

n∑
k=0

Wm,r[n,k]p,q[mt|m]kp,q

}
gj

=

∞∑
j=0

{
j∑
k=0

{
j∑

n=k

wm,r[j,n]p,qWm,r[n,k]p,q

}
[mt|m]kp,q

}
gj.
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Applying the orthogonality relation in (2.3) to this equation yields

∞∑
k=0

{ ∞∑
n=k

Wm,r[n,k]p,qfn

}
[mt|m]kp,q =

∞∑
j=0

{
j∑
k=0

{
δk,j
}
[mt|m]kp,q

}
gj

=

∞∑
k=0


∞∑
j=k

δk,jgj

 [mt|m]kp,q

=

∞∑
k=0

{δk,kgk + δk,k+1gk+1 + · · · } [mt|m]kp,q

=

∞∑
k=0

{gk} [mt|m]kp,q.

By comparing the coefficients of [mt|m]kp,q,

∞∑
n=k

Wm,r[n,k]p,qfn = gk.

Conversely, suppose that

gk =

∞∑
n=k

Wm,r[n,k]p,qfn.

Then combining this with the defining relation in (2.1),

∞∑
k=0

{ ∞∑
n=k

wm,r[n,k]p,qgn

}
[mt+ r]kp,q =

∞∑
n=0

{
n∑
k=0

wm,r[n,k]p,q[mt+ r]
k
p,q

}
gn

=

∞∑
n=0

{
[mt|m]np,q

}
gn

=

∞∑
n=0


∞∑
j=n

Wm,r[j,n]p,qfj

 [mt|m]np,q.

Re-indexing the sums and again using (2.1) gives

∞∑
k=0

{ ∞∑
n=k

wm,r[n,k]p,qgn

}
[mt+ r]kp,q =

∞∑
j=0

{
j∑
n=0

Wm,r[j,n]p,q[mt|m]np,q

}
fj

=

∞∑
j=0

{
j∑
n=0

Wm,r[j,n]p,q

n∑
k=0

wm,r[n,k]p,q[mt+ r]
k
p,q

}
fj

=

∞∑
j=0

{
j∑
k=0

{
j∑

n=k

Wm,r[j,n]p,qwm,r[n,k]p,q

}
[mt+ r]kp,q

}
fj.

By the orthogonality relation in (2.4),

∞∑
k=0

{ ∞∑
n=k

wm,r[n,k]p,qgn

}
[mt+ r]kp,q =

∞∑
j=0

{
j∑
k=0

{
δk,j
}
[mt+ r]kp,q

}
fj
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=

∞∑
k=0


∞∑
j=k

δk,jfj

 [mt+ r]kp,q

=

∞∑
k=0

{δk,kfk + δk,k+1fk+1 + · · · } [mt+ r]kp,q

=

∞∑
k=0

{fk} [mt+ r]
k
p,q.

By comparing the coefficients of [mt+ r]kp,q,

∞∑
n=k

wm,r[n,k]p,qgn = fk.

This completes the proof.

The next theorem contains an explicit formula for Wm,r[j,n]p,q which is analogous to [13, Equation
P4]. This can easily be derived using the inverse relation for the (p,q)-binomial coefficients in [9].

Theorem 2.4. For nonnegative integers n and k, and real numbers m, and r, the (p,q)-analogue Wm,r[n,k]p,q is
equal to

Wm,r[n,k]p,q =
1

[mk|m]kp,q

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
p,q

[mj+ r]np,q. (2.7)

Proof. By taking t = k, Theorem 2.2 gives

[mk+ r]np,q =

n∑
j=0

Wm,r[n, j]p,q[mk|m]
j
p,q =

k∑
j=0

p(
k−j

2 )
[
k

j

]
q,p


Wm,r[n, j]p,q[mk|m]

j
p,q

p(
k−j

2 )
[
k

j

]
q,p

 .

Applying the inverse relation for (p,q)-binomial coefficients [9] and using the fact that[
k

j

]
q,p

=

[
k

j

]
p,q

,

we obtain the desired result.

Now, using the explicit formula in Theorem 2.4 and the Cauchy’s formula for the product of two
power series [6], we get

∑
n>0

Wm,r[n,k]p,q
tn

n!
=
∑
n>0

1

[mk|m]kp,q

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
p,q

[mj+ r]np,q
tn

n!

=
1

[mk|m]kp,q

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
p,q

∑
n>0

([mj+ r]p,qt)
n

n!

=
1

[mk|m]kp,q

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
p,q
e[mj+r]p,qt.

This is exactly the exponential generating function in the next theorem.
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Theorem 2.5. For nonnegative integers n and k, and real numbers m, and r, the (p,q)-analogue Wm,r[n,k]p,q
satisfies the following exponential generating function

∑
n>0

Wm,r[n,k]p,q
tn

n!
=

1

[mk|m]kp,q

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
p,q
e[mj+r]p,qt. (2.8)

For a more compact form of (2.7) and (2.8), let us consider the following (p,q)-difference operator
which is known to be an extension of the q-difference operator of Conrad [7].

The (p,q)-difference operator of degree n, denoted by ∆np,q, is a mapping that assigns to every function
f the function ∆npqf defined by the rule

∆npqf(x) =

n−1∏
j=0

(pjE− qj)

 f(x), n > 1,

where E is the shift operator defined by the rule Ef(x) = f(x+ 1). As convention, define ∆0
pq = 1 (the

identity map, [14, Definition 2.1]).
Note that the q-difference operator of degree n ∆nq in [7] can be obtained from ∆npq by setting p = 1,

which further gives the difference operator ∆n when q tends to 1.
By induction on n and using the triangular recurrence relation of the (p,q)-binomial coefficients in

[9], we can easily obtain the following formula

∆npqf(x) =

n∑
k=0

(−1)k p(
n−k

2 )q(
k
2)
[
n

k

]
p,q
f(x+n− k). (2.9)

Applying (2.9) to the function f1 and f2 defined by

f1(x) =
[mx+ r]np,q

p(
x
2)[mk|m]kp,q

and f2(x) =
e[mx+r]p,qt

p(
x
2)[mk|m]kp,q

,

we can, respectively, express (2.7) and (2.8) in compact form as follows.

Remark 2.6. The (p,q)-analogue of Wm,r[n,k]p,q equals to

Wm,r[n,k]p,q =

[
∆kpq

(
[mx+ r]np,q

p(
x
2)[mk|m]kp,q

)]
x=0

and has the exponential generating function

∑
n>0

Wm,r[n,k]p,q
tn

n!
=

[
∆kpq

(
e[mx+r]p,qt

p(
x
2)[mk|m]kp,q

)]
x=0

. (2.10)

Remark 2.7. Using the inverse relation in (2.6), the exponential generating function in (2.10) gives

∑
n>0

wm,r[n,k]p,q
k!
tk

[
∆npq

(
e[mx+r]p,qt

p(
x
2)[mn|m]np,q

)]
x=0

= 1.

3. A (p,q)-analogue of r-Whitney-Lah numbers

In this section, a (p,q)-analogue of r-Whitney-Lah numbers , denoted by Lm,r[n,k]p,q, will be defined
and some necessary properties will be derived, which are useful in establishing a Qi-type formula for the
(p,q)-analogue of r-Dowling numbers.
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Definition 3.1. The (p,q)-analogue of r-Whitney-Lah numbers is defined by

[mt+ r|m]np,q =

n∑
k=0

Lm,r[n,k]p,q[mt− r|m]kp,q. (3.1)

Notice that the horizontal generating function in (3.1) can be written as

[mt+ 2r|m]np,q =

n∑
k=0

Lm,r[n,k]p,q[mt|m]kp,q.

Theorem 3.2. The (p,q)-analogue of r-Whitney-Lah numbers satisfies the following explicit formula:

Lm,r[n,k]p,q =
1

[mk− r|m]kp,q

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
p,q

[mj+ r|m]kp,q. (3.2)

Proof. We will rewrite (3.1) as

[mk+ r|m]np,q =

k∑
j=0

Lm,r[n,k]p,q[mk− r|m]
j
p,q =

k∑
j=0

p(
k−j

2 )
[
k

j

]
p,q


Lm,r[n,k]p,q[mk− r|m]

j
p,q

p(
k−j

2 )
[
k

j

]
p,q

 .

Applying the (p,q)-binomial inversion and using the fact that[
k

j

]
p,q

=

[
k

j

]
q,p

,

then with fk = [mk+ r|m]np,q and gj =
Lm,r[n,k]p,q[mk− r|m]

j
p,q

p(
k−j

2 )
[
k

j

]
p,q

, we get

Lm,r[n,k]p,q[mk− r|m]
j
p,q =

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
p,q

[mj+ r|m]kp,q,

which gives the desired result.

Theorem 3.3. The (p,q)-analogue of r-Whitney-Lah numbers satisfies the following exponential generating func-
tion ∑

n>0

Lm,r[n,k]p,q
tn

n!
=

1

[mk− r|m]kp,q

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
p,q
e[mj+r|m]p,qt. (3.3)

Proof. Using equation (3.2) and the Cauchy’s formula for the product of two power series [6], we get

∑
n>0

Lm,r[n,k]p,q
tn

n!
=
∑
n>0

1

[mk− r|m]kp,q

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
p,q

[mj+ r|m]kp,q
tn

n!

=
1

[mk− r|m]kp,q

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
p,q

∑
n>0

([mj+ r|m]kp,qt)
n

n!

=
1

[mk− r|m]kp,q

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
p,q
e[mj+r|m]p,qt.

This is exactly equation (3.3).
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In the next theorem, we will express the (p,q)-analogue of the r-Whitney-Lah numbers as sum of
products of the (p,q)-analogues of the r-Whitney numbers of the first and second kinds.

Theorem 3.4. The (p,q)-analogue of r-Whitney-Lah numbers satisfies the following generating function

Lm,r[n,k]p,q =

n∑
j=k

wm,−r[n, j]p,qWm,r[j,k]p,q. (3.4)

Proof. Using Definitions 3.1 and 2.1, we have

n∑
k=0

Lm,r[n,k]p,q[mt− r|m]kp,q = [mt+ r|m]np,q =

n∑
j=0

wm,−r[n, j]p,q[mt]
j
p,q

=

n∑
j=0

wm,−r[n, j]p,q

{
j∑
k=0

Wm,r[j,k]p,q[mt− r|m]kp,q

}

=

n∑
k=0


n∑
j=k

wm,−r[n, j]p,qWm,r[j,k]p,q

 [mt− r|m]kp,q.

Comparing the coefficients of [mt− r|m]kp,q yields (3.4).

4. A (p,q)-analogue of r-Dowling numbers

The r-Dowling polynomials Dm,r(n, x) of Cheon and Jung [3] defined by

Dm,r(n, x) =
n∑
k=0

Wm,r(n,k)xk,

would consequently yield the r-Dowling numbers, denoted by Dm,r(n), when x = 1. That is,

Dm,r(n) = Dm,r(n, 1) =
n∑
k=0

Wm,r(n,k).

A q-analogue of r-Dowling numbers has been introduced and investigated in [11, 15] in three forms,
namely,

Dm,r[n]q :=

n∑
k=0

Wm,r[n,k]q, D∗m,r[n]q :=

n∑
k=0

W∗m,r[n,k]q, D̃m,r[n]q :=

n∑
k=0

W̃m,r[n,k]q,

where Wm,r[n,k]q and

W∗m,r[n,k]q := q−kr−m(k2)Wm,r[n,k]q,

W̃m,r[n,k]q := qkrW∗m,r[n,k]q = q−m(k2)Wm,r[n,k]q,

denote the first, second and third forms of the q-analogue of r-Whitney numbers of the second kind,
respectively, with

Wm,r[n,k]q = qm(k−1)−rWm,r[n− 1,k− 1]q + [mk− r]qWm,r[n− 1,k]q,

(see [11, 15, 16]). Now, we define a (p,q)-analogue of r-Dowling numbers as follows.
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Definition 4.1. A (p,q)-analogue of r-Dowling numbers, denoted by Dm,r[n]p,q, is defined by

Dm,r[n]p,q =

n∑
k=0

Wm,r[n,k]p,q. (4.1)

Using the explicit formula in Theorem 2.4, we have

Dm,r[n]p,q =

n∑
k=0

Wm,r[n,k]p,q =

∞∑
k=0

 1

[mk|m]kp,q

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
p,q

[mj+ r]np,q



=

∞∑
k=0

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
p,q

[mj+ r]np,q

[mk|m]kp,q

=

∞∑
j=0

∞∑
k=j

(−1)k−jq(
k−j

2 )[k]p,q![mj+ r]np,q

[mk|m]kp,q[j]p,q![k− j]p,q!
.

Replacing k− j with i gives

Dm,r[n]p,q =

∞∑
j=0

∞∑
i=0

(−1)iq(
i
2)[i+ j]p,q![mj+ r]np,q

[m(i+ j)|m]kp,q[j]p,q![i]p,q!
,

which is exactly equation (4.2) in the next theorem.

Theorem 4.2. The (p,q)-analogue of r-Dowling numbers Dm,r[n]p,q satisfy the following

Dm,r[n]p,q =

∞∑
j=0

∞∑
i=0

(−1)iq(
i
2)[i+ j]p,q![mj+ r]np,q

[j]p,q![i]p,q![m(j+ 1)|m]np,q
. (4.2)

The following theorem contains the exponential generating function of The (p,q)-analogue of r-
Dowling number.

Theorem 4.3. The (p,q)-analogue of r-Dowling numbers Dm,r[n]p,q satisfy the following exponential generating
function ∞∑

n=0

Dm,r[n]p,q
tn

n!
=

∞∑
k=0

{
∆kp,q

(
e[mx+r]p,qt

p(
x
2)[mk|m]kp,q

)}
. (4.3)

Proof. Multiplying both sides of equation (4.1) with tn

n! and summing over n gives

∞∑
n=0

Dm,r[n]p,q
tn

n!
=

∞∑
n=0

{
n∑
k=0

Wm,r[n,k]p,q

}
tn

n!
=

∞∑
k=0

{ ∞∑
n=0

Wm,r[n,k]p,q
tn

n!

}
.

Applying the exponential generating function of the (p,q)-analogue of r-Whitney numbers of the second
kind in Remark 2.6 yields the desired exponential generating function in (4.3).

Now, Qi [24] obtained an explicit formula for the Bell numbers expressed in terms of both the Lah
numbers and the Stirling numbers of the second kind by

Bn =

n∑
k=0

(−1)n−k


k∑
j=0

L(k, j)

S(n,k). (4.4)
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We call (4.4) the Qi formula for the Bell numbers. Qi provided a proof of (4.4) that requires the inverse
relation between the Stirling numbers of the first and the second kinds

fn =

n∑
k=0

S(n,k)gk ⇔ gn =

n∑
k=0

s(n,k)fk

and the identity for the Lah numbers expressed as the sum of the product of the Stirling numbers of the
first and the second kind given by

L(n,k) =
n∑
j=k

(−1)js(n, j)S(j,k).

Other similar works can be seen in [5, 20].
To obtain the next result, we adopt a process similar with Qi’s work.

Theorem 4.4. The explicit formula for the (p,q)-analogue of r-Dowling numbers Dm,r[n]p,q is given by

Dm,r[n]p,q =

n∑
k=0

Wm,−r[n,k]p,q

 k∑
j=0

Lm,r[k, j]p,q

 .

Proof. Using the inverse relation (2.5) with

fn = Lm,r[n, j]p,q, gk =Wm,r[k, j]p,q,

relation in Theorem 3.4 can be transformed as

Wm,r[n, j]p,q =

n∑
k=j

Wm,−r[n,k]p,qLm,r[k, j]p,q.

Then summing up both sides over j yields

Dm,r[n]p,q =

n∑
j=0

Wm,r[n, j]p,q =

n∑
j=0

n∑
k=j

Wm,−r[n,k]p,qLm,r[k, j]p,q

=

n∑
k=0

Wm,−r[n,k]p,q

 k∑
j=0

Lm,r[k, j]p,q

 ,

which is exactly the desired explicit formula for the (p,q)-analogue of r-Dowling numbers.

The above explicit formula may also be called a Qi-type formula for the (p,q)-analogue of r-Dowling
numbers, which is analogous to explicit formula obtained by Qi [24].

5. Conclusion

This paper have established (p,q)-analogues of r-Whitney and r-Whitney-Lah numbers and obtained
some necessary properties which are useful in developing a (p,q)-analogue of r-Dowling numbers, par-
ticularly, a (p,q)-analogue of the explicit formula in [24] known as Qi-type formula. Parallel to the Hankel
transform of (q, r)-Dowling numbers, it would also be interesting to establish the Hankel transform of
(p,q)-analogue of r-Dowling numbers.
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