New classes of harmonic meromorphic multivalent starlike functions in Janowski domain
Volume 24, Issue 3, pp 216--224
http://dx.doi.org/10.22436/jmcs.024.03.03
Publication Date: February 23, 2021
Submission Date: December 14, 2020
Revision Date: December 26, 2020
Accteptance Date: January 03, 2021
-
1176
Downloads
-
2731
Views
Authors
Timilehin Gideon Shaba
- Department of Mathematics , University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
Bakhtiar Ahmad
- Government Degree College Mardan, 23200 Mardan, Pakistan.
Muhammad Ghaffar Khan
- Institute of Numerical Sciencies, Kohat University of Science and Technology, Kohat, Pakistan.
Zabidin Salleh
- Department of Mathematics, Faculty of Ocean Engineering Technology and Informatics , Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
Wali Khan Mashwani
- Institute of Numerical Sciencies, Kohat University of Science and Technology, Kohat, Pakistan.
Shahid Khan
- Institute of Numerical Sciencies, Kohat University of Science and Technology, Kohat, Pakistan.
Abstract
In this article some applications of harmonic analysis are discussed in the
field of Geometric Function Theory in the form of a new class of meromorphic
multivalent functions. A differential operator for these function have been
used to define classes of meromorphic multivalent functions in association
with Janowski functions in symmetric points. Various geometric properties
like sufficiency criteria, growth theorem, convex combination, weighted mean
for these functions have been evaluated for this newly defined class.
Share and Cite
ISRP Style
Timilehin Gideon Shaba, Bakhtiar Ahmad, Muhammad Ghaffar Khan, Zabidin Salleh, Wali Khan Mashwani, Shahid Khan, New classes of harmonic meromorphic multivalent starlike functions in Janowski domain, Journal of Mathematics and Computer Science, 24 (2022), no. 3, 216--224
AMA Style
Shaba Timilehin Gideon, Ahmad Bakhtiar, Khan Muhammad Ghaffar, Salleh Zabidin, Mashwani Wali Khan, Khan Shahid, New classes of harmonic meromorphic multivalent starlike functions in Janowski domain. J Math Comput SCI-JM. (2022); 24(3):216--224
Chicago/Turabian Style
Shaba, Timilehin Gideon, Ahmad, Bakhtiar, Khan, Muhammad Ghaffar, Salleh, Zabidin, Mashwani, Wali Khan, Khan, Shahid. "New classes of harmonic meromorphic multivalent starlike functions in Janowski domain." Journal of Mathematics and Computer Science, 24, no. 3 (2022): 216--224
Keywords
- Multivalent function
- harmonic meromorphic function
- Janowski function
- starlike functions
- subordination
MSC
References
-
[1]
O. P. Ahuja, Planar harmonic univalent and related mappings, J. Inequal. Pure Appl. Math., 6 (2005), 18 pages
-
[2]
O. P. Ahuja, J. M. Jahangiri, Errata to: "Multivalent harmonic starlike functions", Ann. Univ. Mariae Curie-Skłodowska Sect. A, 55 (2001), 1--13
-
[3]
O. P. Ahuja, J. M. Jahangiri, Multivalent meromorphic harmonic functions, Adv. Stud. Contemp. Math. (Kyungshang), 7 (2003), 179--187
-
[4]
A. Aleman, A. Constantin, Harmonic maps and ideal fluid flows, Arch. Ration. Mech. Anal., 204 (2012), 479--513
-
[5]
H. A. Al-zkeri, F. M. Al-Oboudi, On a class of harmonic starlike multivalent meromorphic functions, Int. J. Open Probl. Complex Anal., 3 (2011), 68--81
-
[6]
M. Arif, O. Barkub, H. M. Srivastava, S. Abdullah, S. A. Khan, Some Janowski type Harmonic q-starlike functions associated with symmetrical points, Mathematics, 8 (2020), 16 pages
-
[7]
D. Bshouty, W. Hengartner, M. Naghibi-Beidokhti, p-valent harmonic mappings with finite Blaschke dilatations, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 53 (1999), 9--26
-
[8]
R. Chand, P. Singh, On certain schlicht mappings, Indian J. Pure Appl. Math., 10 (1979), 1167--1174
-
[9]
J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math., 9 (1984), 3--25
-
[10]
O. Constantin, M. J. Martın, A harmonic maps approach to fluid flows, Math. Ann., 369 (2017), 1--16
-
[11]
J. Dziok, On Janowski harmonic functions, J. Appl. Anal., 21 (2015), 99--107
-
[12]
S. Elhaddad, H. Aldweby, M. Darus, On a subclass of harmonic univalent functions involving a new operator containing q-MittagLeffler function, Int. J. Math. Comput. Sci., 14 (2019), 833--847
-
[13]
J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 52 (1998), 57--66
-
[14]
J. M. Jahangiri, Harmonic meromorphic starlike functions, Bull. Korean Math. Soc., 37 (2000), 291--301
-
[15]
J. M. Jahangiri, H. Silverman, Meromorphic Univalent Harmonic Functions with Negative Coefficients, Bull. Korean Math. Soc., 36 (1999), 763--770
-
[16]
A. Juma, Study of harmonic multivalent meromorphic functions by using generalized hypergeometric functions, J. Nonlinear Anal. Optim., 2 (2011), 367--372
-
[17]
M. G. Khan, B. Ahmad, T. Abdeljawad, Applications of a differential operator to a class of harmonic mappings defined by MittagLeffer functions, AIMS Math., 5 (2020), 6782--6799
-
[18]
M. G. Khan, B. Ahmad, N. E. Cho., Properties of harmonic mappings associated with polylogrithm functions, Applied Mathematics E-Notes, (), Accepted
-
[19]
M. G. Khan, B. Ahmad, M. Darus, W. K. Mashwani, S. Khan, On Janowski Type Harmonic Meromorphic Functions with respect to Symmetric Point, J. Funct. Spaces, 2021 (2021), 5 pages
-
[20]
] M. G. Khan,M. Darus, B. Ahmad, G. Murugusundaramoorty, R. Khan, N. Khan, Meromorphic starlike functions with respect to symmetric points, Int. J. Anal. Appl., 18 (2020), 1037--1047
-
[21]
H.-G. Li, Some properties of certain meromorphic multivalent close-to-convex functions, Miskolc Math. Notes, 21 (2020), 249--259
-
[22]
S. Li, H. Tang, L. Ma, E. Ao, A new class of harmonic multivalent meromorphic functions, Bull. Math. Anal. Appl., 7 (2015), 20--30
-
[23]
G. Murugusundaramoorthy, Starlikeness of multivalent meromorphic harmonic function, Bull. Korean Math. Soc., 40 (2003), 553--564
-
[24]
I. R. Nezhmetdinov, A sharp lower bound in the distortion theorem for the Sakaguchi class, J. Math. Anal. Appl., 242 (2000), 129--134
-
[25]
M. Ozawa, An elementary proof of the Bieberbach conjecture for the sixth coefficient, Kodai Math. Sem. Rep., 21 (1969), 129--132
-
[26]
K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72--75
-
[27]
F. M. Sakar, H. O. Guney, New subclass of multivalent meromorphic harmonic functions defined by a new generalized al-boudi differential operator,, World Appl. Sci. J., 20 (2012), 1696--1703
-
[28]
T. N. Shanmugam, C. Ramachandran, V. Ravichandran, Fekete-Szegő problem for subclasses of starlike functions with respect to symmetric points, Bull. Korean Math. Soc., 43 (2006), 589--598
-
[29]
T. Shiel-Small, Constants for planar harmonic mappings, J. London Math. Soc., 42 (1990), 237--248
-
[30]
H. Silverman, Harmonic univalent functions with negative coeffcients, J. Math. Anal. Appl., 220 (1998), 283--289
-
[31]
J. Thangamani, On starlike functions with respect to symmetric points, Indian J. Pure Appl. Math., 11 (1980), 392--405
-
[32]
Z.-G. Wang, Some subclasses of close-to-convex and quasi-convex functions, Mat. Vesnik, 59 (2007), 65--73
-
[33]
Z.-G. Wang, C.-Y. Gao, S.-M. Yuan, On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points, J. Math. Anal. Appl., 322 (2006), 97--106
-
[34]
A. K. Yadav, Harmonic multivalent meromorphic functions defined by an integral operator, J. Appl. Math. Bioinform., 2 (2012), 99--114