On quasi bi-slant Lorentzian submersions from \(LP\)-Sasakian manifolds
Volume 24, Issue 3, pp 186--200
http://dx.doi.org/10.22436/jmcs.024.03.01
Publication Date: February 14, 2021
Submission Date: December 23, 2020
Revision Date: January 23, 2021
Accteptance Date: January 24, 2021
-
1570
Downloads
-
3029
Views
Authors
Rajendra Prasad
- Department of Mathematics and Astronomy, University of Lucknow, Lucknow, India.
Fatemah Mofarreh
- Mathematical Science Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 11546, Saudi Arabia.
Abdul Haseeb
- Department of Mathematics, College of Science, Jazan University, Jazan-2097, Kingdom of Saudi Arabia.
Sandeep Kumar Verma
- Department of Mathematics and Astronomy, University of Lucknow, Lucknow, India.
Abstract
At this work, quasi bi-slant Lorentzian submersions from \(LP\)-Sasakian
manifolds onto Riemannian manifolds have been studied. Further, the geometry
of leaves of the distributions, integrability conditions and totally
geodesic conditions have also been discussed. Finally, we construct some examples of this setting.
Share and Cite
ISRP Style
Rajendra Prasad, Fatemah Mofarreh, Abdul Haseeb, Sandeep Kumar Verma, On quasi bi-slant Lorentzian submersions from \(LP\)-Sasakian manifolds, Journal of Mathematics and Computer Science, 24 (2022), no. 3, 186--200
AMA Style
Prasad Rajendra, Mofarreh Fatemah, Haseeb Abdul, Verma Sandeep Kumar, On quasi bi-slant Lorentzian submersions from \(LP\)-Sasakian manifolds. J Math Comput SCI-JM. (2022); 24(3):186--200
Chicago/Turabian Style
Prasad, Rajendra, Mofarreh, Fatemah, Haseeb, Abdul, Verma, Sandeep Kumar. "On quasi bi-slant Lorentzian submersions from \(LP\)-Sasakian manifolds." Journal of Mathematics and Computer Science, 24, no. 3 (2022): 186--200
Keywords
- \(LP\)-Sasakian manifolds
- slant submersions
- Lorentzian submersions
- quasi bi-slant Lorentzian submersions
MSC
- 53C12
- 53C15
- 53C25
- 53C50
- 55D15
References
-
[1]
M. A. Akyol, R. Sarı, E. Aksoy, Semi-invariant $\xi^\perp$-Riemannian submersions from almost contact metric manifolds, Int. J. Geom. Methods Mod. Phys., 14 (2017), 17 pages
-
[2]
C. Altafini, Redundant robotic chains on Riemannian submersions, IEEE Trans. Robot. Autom., 20 (2004), 335--340
-
[3]
P. Baird, J. C. Wood, Harmonic Morphism between Riemannian Manifolds, Oxford University Press, Oxford (2003)
-
[4]
D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Birkhauser Boston, Boston (2002)
-
[5]
D. Chinea, Almost contact metric submersions, Rend. Circ. Mat. Palermo, 34 (1985), 89--104
-
[6]
M. Falcitelli, S. Ianus, A. M. Pastore, Riemannian submersions and related topics, World Scientific, New York (2004)
-
[7]
M. Falcitelli, S. Ianus, A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific Publishing Co., , NJ, River Edge (2004)
-
[8]
A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715--738
-
[9]
Y. Gunduzalp, Slant submersions from Lorentzian almost paracontact manifolds, Gulf J. Math., 3 (2015), 18--28
-
[10]
Y. Gunduzalp, B. Sahin, Paracontact semi-Riemannian submersions, Turkish J. Math., 37 (2013), 114--128
-
[11]
A. Haseeb, R. Prasad, Certain curvature conditions in Lorentzian para-Sasakian manifolds with respect to the semisymmetric metric connection, Int. J. Maps Math., 3 (2020), 85--99
-
[12]
S. Ianus, A. M. Ionescu, R. Mocanu, G. E. Vılcu, Riemannian submersions from Almost contact metric manifolds, Abh. Math. Semin. Univ. Hambg., 81 (2011), 101--114
-
[13]
S. Ianus, R. Mazzocco, G. E. Vılcu, Riemannian submersion from quaternionic manifolds, Acta Appl. Math., 104 (2008), 83--89
-
[14]
In: The mathematical heritage of C. F. Gauss S. Ianus, M. Visinescu, Space-time compactication and Riemannian submersions, World Sci. Publ., River Edge (1991)
-
[15]
S. Kumar, R. Prasad, P. K. Singh, Conformal semi-slant submersions from Lorentzian para Sasakian manifolds, Commun. Korean Math. Soc., 34 (2019), 637--655
-
[16]
M. A. Magid, Submersions from anti-de Sitter space with totally geodesic fibers, J. Differential Geom., 16 (1981), 323--331
-
[17]
K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci., 12 (1989), 151--156
-
[18]
I. Mihai, R. Rosca, On Lorentzian P-Sasakian manifolds, Classical Analysis, World Sci. Publ., River Edge (1992)
-
[19]
C. Murathan, I. K. Erkena, Anti-invariant Riemannian submersions from cosymplectic manifolds onto Riemannian manifolds, Filomat, 29 (2015), 1429--1444
-
[20]
M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys., 41 (2000), 6918--6929
-
[21]
K.-S. Park, R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc., 50 (2013), 951--962
-
[22]
R. Prasad, S. Kumar, Semi-slant Riemannian maps from almost contact metric manifolds into Riemannian manifolds, Tbilisi Math. J., 11 (2018), 19--34
-
[23]
R. Prasad, S. S. Shukla, S. Kumar, On quasi-bi-slant submersions, Mediterr. J. Math., 16 (2019), 18 pages
-
[24]
B. O’Neill, The fundamental equations of a submersion, Michigan Math. J., 33 (1966), 459--469
-
[25]
B. O’Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, San Diego (1983)
-
[26]
B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math., 8 (2010), 437--447
-
[27]
B. Sahin, Slant submersions from Almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie, 54 (2011), 93--105
-
[28]
B. Sahin, Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull., 56 (2013), 173--183
-
[29]
B. Sahin, Riemannian submersion from almost Hermitian manifolds, Taiwanese J. Math., 17 (2013), 629--659
-
[30]
B. Sahin, Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications, Elsevier/Academic Press, London (2017)
-
[31]
H. M. Tastan, B. Sahin, S. Yanan, Hemi-slant submersions, Mediterr. J. Math., 13 (2016), 2171--2184
-
[32]
B. Watson, Almost Hermitian submersions, J. Differential Geometry, 11 (1976), 147--165