Analytical properties of extended Hermite-Bernoulli polynomials
Volume 20, Issue 4, pp 292--301
http://dx.doi.org/10.22436/jmcs.020.04.03
Publication Date: February 28, 2020
Submission Date: October 08, 2019
Revision Date: December 09, 2019
Accteptance Date: January 16, 2020
-
1507
Downloads
-
3238
Views
Authors
Nabiullah Khan
- Department of Applied Mathematics, Aligarh Muslim University, Aligarh-202002, India.
Naeem Ahmad
- Department of Mathematics, College of Science, Jouf University, P. O. Box 2014, Sakaka, Saudi Arabia.
Mohd Ghayasuddin
- Department of Mathematics, Integral University Campus, Shahjahanpur-242001, India.
Abstract
This article aims to present a new family of extended Hermite-Bernoulli polynomials by making use of the Mittag-Leffler function. We also derive some analytical properties of our proposed extended Hermite-Bernoulli polynomials systematically. Furthermore, some concluding remarks of our present investigation are also pointed out in the last section.
Share and Cite
ISRP Style
Nabiullah Khan, Naeem Ahmad, Mohd Ghayasuddin, Analytical properties of extended Hermite-Bernoulli polynomials, Journal of Mathematics and Computer Science, 20 (2020), no. 4, 292--301
AMA Style
Khan Nabiullah, Ahmad Naeem, Ghayasuddin Mohd, Analytical properties of extended Hermite-Bernoulli polynomials. J Math Comput SCI-JM. (2020); 20(4):292--301
Chicago/Turabian Style
Khan, Nabiullah, Ahmad, Naeem, Ghayasuddin, Mohd. "Analytical properties of extended Hermite-Bernoulli polynomials." Journal of Mathematics and Computer Science, 20, no. 4 (2020): 292--301
Keywords
- Hermite polynomials
- Bernoulli polynomials
- Hermite-Bernoulli polynomials
- Mittag-Leffler function
MSC
References
-
[1]
L. C. Andrews, Special functions for engineers and applied mathematicians, Macmillan Co., New York (1985)
-
[2]
T. M. Apostol, On the Lerch Zeta function, Pacific. J. Math., 1 (1951), 161--167
-
[3]
E. T. Bell, Exponential polynomials, Ann. of Math. (2), 35 (1934), 258--277
-
[4]
G. Dattoli, S. Lorenzutta, C. Cesarano, Finite sums and generalized forms of Bernoulli polynomials, Rend. Mat. Appl. (7), 19 (1999), 385--391
-
[5]
M. Ghayasuddin, N. U. Khan, J. Choi, A new family of generalized Bernoulli polynomials and numbers, , 2019 (2019), (Communicated)
-
[6]
W. A. Khan, Some properties of the generalized Apostol type Hermite-Based Polynomials, KyungPook Math. J., 55 (2015), 597--614
-
[7]
W. A. Khan, S. Araci, M. Acikgoz, A new class of Laguerre-based Apostol type polynomials, Cogent Math., 3 (2016), 17 pages
-
[8]
W. A. Khan, H. Haroon, Some symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials, SpringerPlus, 5 (2016), 1--21
-
[9]
B. Kurt, A further generalization of the Bernoulli polynomials and on the 2D-Bernoulli polynomials $B_{n}^{2}(x, y)$, Appl. Math. Sci. (Ruse), 4 (2010), 2315--2322
-
[10]
P. Natalini, A. Bernardini, A generalization of the Bernoulli polynomials, J. Appl. Math., 3 (2003), 155--163
-
[11]
G. M. Mittag-Leffler, Sur la représentation analytique d'une branche uniforme d'une fonction monogène, Acta Math., 29 (1905), 101--182
-
[12]
M. A. Pathan, A new class of generalized Hermite-Bernoulli polynomials, Georgian Math. J., 19 (2012), 559--573
-
[13]
M. A. Pathan, W. A. Khan, Some implicit summation formulas and symmetric identities for the generalized Hermite-Euler polynomials, East-West J. Math., 16 (2014), 92--109
-
[14]
M. A. Pathan, W. A. Khan, Some implicit summation formulas and symmetric identities for the generalized Hermite-Bernoulli polynomials, Mediterr. J. Math., 12 (2015), 679--695
-
[15]
E. D. Rainville, Special functions, Macmillan Co., New York (1960)
-
[16]
H. M. Srivastava, J. S. Choi, Zeta and q-Zeta functions and associated series and integrals, Elsevier, Amsterdam (2012)
-
[17]
H. M. Srivastava, H. L. Manocha, A treatise on generating functions, John Wiley & Sons, New York (1984)