The study of the product \(t\)-norm in the compositional rule of inference with various implications
Authors
S. B. H. Kacem
- University of Carthage, Faculty of Economics and Management, Mrezga Campus, Nabeul 8000, Tunisia.
N. Zerarka
- University of Manouba, National School of Computer Sciences, Manouba 2010, Tunisia.
M. Tagina
- University of Manouba, National School of Computer Sciences, Manouba 2010, Tunisia.
Abstract
Fuzzy Inference Systems (FIS) are used to help people to take decisions in complex situations or when a human expert is needed. Their particularity is that they can manage the imprecision and vagueness of knowledge by applying approximate reasoning. The main approach of approximate reasoning is the Compositional Rule of Inference (CRI), whose definition contains two operators as parameters: a \(t\)-norm and a fuzzy implication. However, since its creation, the fuzzy community considers only one combination of (\(t\)-norm, implication) in fuzzy applications, which is (min, min). For that, we are interested in studying the behavior of other combinations (\(t\)-norm, implication) and in checking their efficiency. In this paper, we combine the product \(t\)-norm with fifteen implications in the CRI. Then, for every combination, we check the satisfaction of the axiomatics of approximate reasoning. This axiomatics is a set of criteria that model human intuitions. This study allows us to identify the best combinations that coincide with human reasoning in order to guarantee an inference result close to the expert's opinion.
Share and Cite
ISRP Style
S. B. H. Kacem, N. Zerarka, M. Tagina, The study of the product \(t\)-norm in the compositional rule of inference with various implications, Journal of Mathematics and Computer Science, 41 (2026), no. 3, 284--306
AMA Style
Kacem S. B. H., Zerarka N., Tagina M., The study of the product \(t\)-norm in the compositional rule of inference with various implications. J Math Comput SCI-JM. (2026); 41(3):284--306
Chicago/Turabian Style
Kacem, S. B. H., Zerarka, N., Tagina, M.. "The study of the product \(t\)-norm in the compositional rule of inference with various implications." Journal of Mathematics and Computer Science, 41, no. 3 (2026): 284--306
Keywords
- Compositional rule of inference
- fuzzy logic
- approximate reasoning
- product \(t\)-norm
- fuzzy implications
MSC
References
-
[1]
H. Ahmadi, M. Gholamzadeh, L. Shahmoradi, M. Nilashi, P. Rashvand, Diseases diagnosis using fuzzy logic methods: A systematic and meta-analysis review, Comput. Methods Programs Biomed., 161 (2018), 145–172
-
[2]
M. Akhoondzadeh, D. Marchetti, Study of the preparation phase of turkey’s powerful earthquake (6 february 2023) by a geophysical multi-parametric fuzzy inference system, Remote Sens., 15 (2023), 25 pages
-
[3]
R. M. Al-Kiyumi, C. H. Foh, S. Vural, P. Chatzimisios, R. Tafazolli, Fuzzy logic-based routing algorithm for lifetime enhancement in heterogeneous wireless sensor networks, IEEE Trans. Green Commun. Netw., 2 (2018), 517–532
-
[4]
A. Amindoust, S. Ahmed, A. Saghafinia, A. Bahreininejad, Sustainable supplier selection: A ranking model based on fuzzy inference system, Appl. Soft Comput., 12 (2012), 1668–1677
-
[5]
H. Bandemer, S. Gottwald, Fuzzy sets, fuzzy logic, fuzzy methods, Wiley, Chichester (1995)
-
[6]
S. Bel Hadj Kacem, A. Borgi, S. Othman, Das-autism: A rule-based system to diagnose autism within multi-valued logic, In: Smart Systems for E-Health, Springer, Cham, (2021), 183–200
-
[7]
R. Boadh, D. D. Aarya, M. Dahiya, R. Rathee, S. Rathee, A. Kumar, S. Jain, Y. K. Rajoria, Study and prediction of prostate cancer using fuzzy inference system, Materials Today: Proceedings, 56 (2022), 157–164
-
[8]
B. Bouchon-Meunier, R. Mesiar, C. Marsala, M. Rifqi, Compositional rule of inference as an analogical scheme, Fuzzy Sets Syst., 138 (2003), 53–66
-
[9]
E. Czogała, J. Łeski, On equivalence of approximate reasoning results using different interpretations of fuzzy if–then rules, Fuzzy Sets Syst., 117 (2001), 279–296
-
[10]
K. Demirli, I. B. Turksen, A review of implications and the generalized modus ponens, In: Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference, IEEE, (1994), 1440–1445
-
[11]
J. Dombi, T. Jónás, Approximate reasoning based on the preference implication, Fuzzy Sets Syst., 499 (2025), 14 pages
-
[12]
D. Dubois, H. Prade, Fuzzy logics and the generalized modus ponens revisited, Cybernet. Syst., 15 (1984), 293–331
-
[13]
S. Fukami, M. Mizumoto, K. Tanaka, Some considerations on fuzzy conditional inference, Fuzzy sets Syst., 4 (1980), 243–273
-
[14]
S. Jenei, Continuity in zadeh’s compositional rule of inference, Fuzzy Sets Syst., 104 (1999), 333–339
-
[15]
M. A. Kazemi, M. Pa, M. N. Uddin, M. Rezakazemi, Adaptive neuro-fuzzy inference system based data interpolation for particle image velocimetry in fluid flow applications, Eng. Appl. Artif. Intell., 119 (2023),
-
[16]
E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Academic Publishers, Dordrecht (2000)
-
[17]
G. Klir, B. Yuan, Fuzzy sets and fuzzy logic, Prentice Hall PTR, Upper Saddle River, NJ (1995)
-
[18]
R. Kruse, S. Mostaghim, C. Borgelt, C. Braune, M. Steinbrecher, Approximate reasoning, In: Computational Intelligence: A Methodological Introduction, Springer, Cham, (2022), 441–449
-
[19]
C. C. Lee, Fuzzy logic in control systems: fuzzy logic controller. I, IEEE Trans. Systems Man Cybernet., 20 (1990), 404–418
-
[20]
C.-S. Lee, M.-H. Wang, A fuzzy expert system for diabetes decision support application, IEEE Trans. Syst. Man Cybern. Part B (Cybern.), 41 (2011), 139–153
-
[21]
Y.-M. Li, Z.-K. Shi, Z.-H. Li, Approximation theory of fuzzy systems based upon genuine many-valued implications — siso cases, Fuzzy Sets Syst., 130 (2002), 147–157
-
[22]
D. Li, Q. Zeng, Approximate reasoning with aggregation functions satisfying gmp rules, Artif. Intell. Rev., 55 (2002), 5575–5595
-
[23]
E. H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man-Mach. Stud., 7 (1957), 1–13
-
[24]
R. Martin-Clouaire, Semantics and computation of the generalized modus ponens: The long paper, Int. J. Approx. Reason., 3 (1989), 195–217
-
[25]
M. P. Martínez, C. P. Cremasco, L. R. A. Gabriel Filho, S. S. B. Junior, A. V. Bednaski, F. Quevedo-Silva, C. M. Correa, D. da Silva, R. C. Moura-Leite Padgett, Fuzzy inference system to study the behavior of the green consumer facing the perception of greenwashing, J. Clean. Prod., 242 (2020), 116064–116086
-
[26]
M. Mas, M. Monserrat, J. Torrens, E. Trillas, A survey on fuzzy implication functions, IEEE Trans. Fuzzy Syst., 15 (2007), 1107–1121
-
[27]
M. Mizumoto, Fuzzy conditional inference under max −⊙ composition, Inf. Sci., 27 (1982), 183–209
-
[28]
M. Mizumoto, Fuzzy inference using max- V . composition in the compositional rule of inference, In: Approximate reasoning in decision analysis, North-Holland, Amsterdam-New York, (1982), 67–76
-
[29]
M. Mizumoto, H.-J. Zimmermann, Comparison of fuzzy reasoning methods, Fuzzy sets syst., 8 (1982), 253–283
-
[30]
A. Mohiyuddin, A. R. Javed, C. Chakraborty, M. Rizwan, M. Shabbir, J. Nebhen, Secure cloud storage for medical iot data using adaptive neuro-fuzzy inference system, Int. J. Fuzzy Syst., 24 (2022), 1203–1215
-
[31]
M. Momenitabar, Z. Dehdari Ebrahimi, M. Arani, J. Mattson, P. Ghasemi, Designing a sustainable closed-loop supply chain network considering lateral resupply and backup suppliers using fuzzy inference system, Environ. Dev. Sustain., (2022), 1–34
-
[32]
B. Mondal, S. Raha, Approximate reasoning in fuzzy resolution, In: 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), IEEE, (2012), 1–6
-
[33]
N. N. Morsi, A. A. Fahmy, On generalized modus ponens with multiple rules and a residuated implication, Fuzzy Sets Syst., 129 (2002), 267–274
-
[34]
A. A. Nadiri, S. Shokri, F. T.-C. Tsai, A. A. Moghaddam, Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model, J. Clean. Prod., 180 (2018), 539–549
-
[35]
K.-W. Oh, W. Bandler, Properties of fuzzy implication operators, Int. J. Approx. Reason., 1 (1987), 273–285
-
[36]
S. K. Pal, D. P. Mandal, Fuzzy logic and approximate reasoning: An overview, IETE J. Res., 37 (1991), 548–560
-
[37]
S. K. Paul, P. Chowdhury, K. Ahsan, S. M. Ali, G. Kabir, An advanced decision-making model for evaluating manufacturing plant locations using fuzzy inference system, Expert Syst. Appl., 191 (2022),
-
[38]
W. Pedrycz, T. Allahviranloo, Chapter 32 - approximate reasoning, In: Decision-Making Models, Academic Press, (2024), 573–586
-
[39]
I. Perfilieva, Finitary solvability conditions for systems of fuzzy relation equations, Inf. Sci., 234 (2013), 29–43
-
[40]
I. Perfilieva, V. Novák, System of fuzzy relation equations as a continuous model of IF-THEN rules, Inf. Sci., 177 (2007), 3218–3227
-
[41]
F. Riaz, S. Khadim, R. Rauf, M. Ahmad, S. Jabbar, J. Chaudhry, A validated fuzzy logic inspired driver distraction evaluation system for road safety using artificial human driver emotion, Comput. Netw., 143 (2018), 62–73
-
[42]
I. Rojas, O. Valenzuela, M. Anguita, A. Prieto, Analysis of the operators involved in the definition of the implication functions and in the fuzzy inference process, Int. J. Approx. Reason., 19 (1998), 367–389
-
[43]
S. Singh, Are large language models good at fuzzy reasoning?, In: Proceedings of the 2024 7th International Conference on Computational Intelligence and Intelligent Systems, (2024), 1–6
-
[44]
M. Štˇepniˇcka, B. De Baets, Implication-based models of monotone fuzzy rule bases, Fuzzy Sets Syst., 232 (2013), 134–155
-
[45]
M. Štˇepniˇcka, B. De Baets, Interpolativity of at-least and at-most models of monotone single-input single-output fuzzy rule bases, Inf. Sci., 234 (2013), 16–28
-
[46]
N. Talpur, S. J. Abdulkadir, H. Alhussian, M. H. Hasan, N. Aziz, A. Bamhdi, Deep neuro-fuzzy system application trends, challenges, and future perspectives: A systematic survey, Artif. Intell. Rev., 56 (2023), 865–913
-
[47]
J. Tick, J. Fodor, Fuzzy implications and inference processes, Comput. Inform., 24 (2005), 591–602
-
[48]
A. S. Tomar, M. Singh, G. Sharma, K. V. Arya, Traffic management using logistic regression with fuzzy logic, Procedia Comput. Sci., 132 (2018), 451–460
-
[49]
M. Vechione, R. L. Cheu, Comparative evaluation of adaptive fuzzy inference system and adaptive neuro-fuzzy inference system for mandatory lane changing decisions on freeways, J. Intell. Transp. Syst., 26 (2022), 746–760
-
[50]
N. R. Vemuri, B. Jayaram, The ⊛-composition of fuzzy implications: closures with respect to properties, powers and families, Fuzzy Sets Syst., 275 (2015), 58–87
-
[51]
S. Weber, A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms, Fuzzy Sets Syst., 11 (1983), 115–134
-
[52]
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353
-
[53]
L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning. III, Inf. Sci., 9 (1975), 43–80
-
[54]
N. Zerarka, S. Bel Hadj Kacem, M. Tagina, The compositional rule of inference under the composition max-product, In: Graph-Based Representation and Reasoning, ICCS 2019, Lecture Notes in Computer Science, Springer, Cham, 11530 (2019), 204–217