Some new approaches of integral inequalities involving Raina and Mittag-Leffler function pertaining to Atangana-Baleanu fractional integral operator
Authors
M. Tariq
- Mathematics Research Center, Near East University, Near East Boulevard, PC: 99138, Nicosia/Mersin 10, Turkey.
- Department of Mathematics, Balochistan Residential College, Loralai, Balochistan, Loralai, Balochistan, Pakistan.
S. K. Ntouyas
- Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece.
W. Afzal
- Abdus Salam School of Mathematical Sciences, Government College University, Lahore, Pakistan.
J. Tariboon
- Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand.
Abstract
Convexity and inequality, particularly as they relate to fractional analysis, have a plethora of significant applications in the applied sciences.
Our goal in this manuscript is to investigate and develop a new version of the Hermite-Hadamard and Pachpatte types of integral inequality using the Atangana-Baleanu fractional integral operator in the context of generalized convex involving Raina's function. Utilizing this method, we develop a new identity for fractional integrals that is associated with Raina's functions. Additionally, some new extensions of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator are examined with the support of Hölder inequality, power mean inequality and Young inequaity. Additionally, we present applications related to entropy measures that demonstrate the practical utility of our main findings. In terms of both outcomes and special cases, this study presents novel and noteworthy improvements over previously published findings.
Share and Cite
ISRP Style
M. Tariq, S. K. Ntouyas, W. Afzal, J. Tariboon, Some new approaches of integral inequalities involving Raina and Mittag-Leffler function pertaining to Atangana-Baleanu fractional integral operator, Journal of Mathematics and Computer Science, 41 (2026), no. 2, 244--263
AMA Style
Tariq M., Ntouyas S. K., Afzal W., Tariboon J., Some new approaches of integral inequalities involving Raina and Mittag-Leffler function pertaining to Atangana-Baleanu fractional integral operator. J Math Comput SCI-JM. (2026); 41(2):244--263
Chicago/Turabian Style
Tariq, M., Ntouyas, S. K., Afzal, W., Tariboon, J.. "Some new approaches of integral inequalities involving Raina and Mittag-Leffler function pertaining to Atangana-Baleanu fractional integral operator." Journal of Mathematics and Computer Science, 41, no. 2 (2026): 244--263
Keywords
- Convex function
- Raina function
- generalized convex involving Raina's function
- AB fractional operator
MSC
- 26A51
- 26A33
- 26D07
- 26D10
- 26D15
References
-
[1]
T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag- Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107
-
[2]
H. Ahmad, M. Tariq, S. K. Sahoo, J. Baili, C. Cesarano, New estimations of Hermite-Hadamard type integral inequalities for special functions, Fractal Fract., 5 (2021), 26 pages
-
[3]
A. Atangana, Application of fractional calculus to epidemiology, In: Fractional dynamics, De Gruyter Open, Berlin, (2015), 174–190
-
[4]
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769
-
[5]
B. Bayraktar, A. K. Attaev, V. C. Kudaev, Some generalized Hadamard-type inequalities via fractional integrals, Russ. Math., 65 (2021), 1–14
-
[6]
S. I. Butt, P. Agarwal, J. J. Nieto, New Hadamard-Mercer inequalities pertaining Atangana-Baleanu operator in Katugampola sense with applications, Mediterr. J. Math., 21 (2024), 23 pages
-
[7]
S. I. Butt, A. Kashuri, J. Nasir, Hermite-Hadamard type inequalities via new exponential type convexity and their applications, Filomat, 35 (2021), 1803–1822
-
[8]
A. Ebrahimzadeh, A. Jajarmi, D. Baleanu, Enhancing water pollution management through a comprehensive fractional modeling framework and optimal control techniques, J. Nonlinear Math. Phys., 31 (2024), 24 pages
-
[9]
A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Methods Appl. Sci., 44 (2020), 8414–8431
-
[10]
A. Föllmer, A. Schied, Convex measures of risk and trading constraints, Finance Stoch., 6 (2002), 429–447
-
[11]
J. Green, P. H. Walter, Mathematical analysis and convexity with applications to economics, In: Handbook of Mathematical Economics; Handbooks in economics; North-Holland Publishing Co., Amsterdam, 1 (1981), 15–52
-
[12]
J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d’une fonction considéréé par Riemann, J. Math. Pures Appl., 9 (1893), 171–215
-
[13]
R. L. Magin, Fractional Calculus in Bio-Engineering, Begell House Inc. Publishers:, Danbury, CN, USA (2006)
-
[14]
D. S. Mitrinovi´c, J. E. Peˇcari´c, A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers Group, Dordrecht (1993)
-
[15]
C. P. Niculescu, L.-E. Persson, Convex functions and their applications, Springer, New York (2006)
-
[16]
J. Pełczy ´ nski, Application of the theory of convex sets for engineering structures with uncertain parameters, Appl. Sci., 10 (2020), 16 pages
-
[17]
T. Pennanen, Convex duality in stochastic optimization and mathematical finance, Math. Oper. Res., 36 (2011), 340–362
-
[18]
S. Qaisar, J. Nasir, S. I. Butt, S. Hussain, On some fractional integral inequalities of hermite-hadamard’s type through convexity, Symmetry, 11 (2019), 11 pages
-
[19]
R. K. Raina, On generalized Wright’s hypergeometric functions and fractional calculus operators, East Asian Math. J., 21 (2005), 191–203
-
[20]
M. Tariq, S. K. Ntouyas, A. A. Shaikh, A comprehensive review of the Hermite–Hadamard inequality pertaining to fractional integral operators, Mathematics, 11 (2023), 106 pages
-
[21]
M. Tariq, A. A. Shaikh, S. K. Ntouyas, Some new fractional Hadamard and Pachpatte type inequalities with applications via generalized preinvexity, , 15 (2023), 23 pages
-
[22]
M. Vivas-Cortez, A. Kashuri, J. E. Hernández Hernández, Trapezium-type inequalities for Raina’s fractional integrals operator using generalized convex functions, Symmetry, 12 (2020), 17 pages
-
[23]
M. J. Vivas-Cortez, R. Liko, A. Kashuri, J. E. Hernández Hernández, New quantum estimates of trapezium-type inequalities for generalized ϕ–convex functions, Mathematics, 7 (2019), 19 pages