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Abstract

Convexity and inequality, particularly as they relate to fractional analysis, have a plethora of significant applications in
the applied sciences. Our goal in this manuscript is to investigate and develop a new version of the Hermite-Hadamard
and Pachpatte types of integral inequality using the Atangana-Baleanu fractional integral operator in the context of generalized
convex involving Raina’s function. Utilizing this method, we develop a new identity for fractional integrals that is associated with
Raina’s functions. Additionally, some new extensions of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional
operator are examined with the support of Holder inequality, power mean inequality and Young inequaity. Additionally, we
present applications related to entropy measures that demonstrate the practical utility of our main findings. In terms of both
outcomes and special cases, this study presents novel and noteworthy improvements over previously published findings.
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1. Introduction

Convex functions have a fascinating history that originates back to the early nineteenth century. The
popular and frequently read book "Inequalities”, written by Polya et al., extensively uses and explores
the concept of "convex functions". This book swiftly became a common resource for mathematicians,
devoted exclusively to the subject of inequality, and a great way to get started in this intriguing area.
Convex theory provides the appropriate guidelines and techniques for focusing on a broad range of
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problems in the applied sciences. In the applied sciences, convex theory gives us the right rules and
methods to concentrate on a wide variety of issues. The development of many facets of mathematics
and other scientific fields has been widely recognized in recent years to be influenced by mathematical
inequalities. This theory has outstanding applications in engineering [16], finance [10], economics [11],
and optimization [17]. This theory offers a strong foundation for the development of numerical tools for
the investigation and resolution of difficult mathematical problems.

Mathematical inequalities provides a fundamental foundation for understanding the perform of func-
tions under integration, leading to important applications in both theoretical and applied mathematics.
An efficient tool in mathematical analysis are convex integral inequalities, which create relationships be-
tween the integrals of convex functions and their values at specific points. Numerous fields, including
probability theory, information theory, and optimization, use them. These inequalities are crucial for nu-
merical techniques like Simpson’s rule, the trapezoidal rule, and others, especially when estimating the
error bounds. For the literature, see the references [5-7, 18, 20, 21].

The subject fractional calculus has many applications in mathematical biology [13], epidemiology [3],
and optimal control [8]. Because of the aforementioned pervasive perspectives and importance, read-
ers and scholars found discussion of fractional operators to be interesting. This theory is useful when
describing and analyzing statistical problems and formulas that resemble quadratures. The Atangana-
Baleanu fractional integral operator (ABFIO) marks a significant breakthrough in fractional calculus, of-
fering enhanced capabilities for modeling complex systems. The ABFIO has become as a potent technique
in modeling complex systems due to its non-local and non-singular kernel involving the Mittag-Leffler
function. Numerous fields where memory and hereditary effects are important find extensive use for this
operator. It has been successfully applied in physics and engineering to simulate anomalous diffusion,
heat transfer, and viscoelastic systems, capturing behaviors that are not possible with classical models. By
taking into account long-term memory effects, it aids in the description of biological sciences processes
such as drug delivery and epidemic modeling. In financial mathematics, the operator is also useful for
modeling systems with memory-dependent fluctuations. Furthermore, it is essential to the establishment
of generalized integral inequalities like Hermite-Hadamard, Fejér, and Pachpatte-type inequalities in the
field of mathematical analysis. Overall, the ABFIO offers a more practical and adaptable framework for
studying dynamic systems with memory properties.

The aim and novelty of this work are to introduce a new variant of Hermite-Hadamard (H-H) and
Pachpatte-type integral inequality via generalized m-convex involving Raina’s function (G, CRF) in the
frame of ABFIO. Further, we are to construct some refinements of H-H type integral inequality via ABFIO.

The order of this particular document is as follows: Firstly, in Section 2, we rehash a few familiar ideas
and terminology that will help us in our investigation in the following sections. In Section 3, we introduce
a new definition namely G,, CRF and also present its algebraic properties. In Section 4, we introduce a
novel sort of H-H-type inequality via ABFIO with some interesting corollaries and remarks. In Section
5, we explore a new integral identity, and based on this newly introduced identity, some refinements of
H-H inequality are also constructed. In Section 6, we investigate a novel sort of Pachpatte-type inequality
via ABFIO with some corollaries and remarks. In Section 7, we introduce entropy application via ABFIO.
In the final Section 8, we offer a brief outcome and outline certain prospective possibilities for further
research.

2. Preliminaries

It is best to analyze and deepen in this section due to the large number of theorems, definitions,
and remarks in order to verify completeness, reader interest and quality. This section is designed to
demonstrate and examine a number of well-known definitions and terminology that we will require for
our investigation in sections to come. Initially, the convex, H-H inequality, Mitagg-Leffler, generalized
convex set, and generalized convex function are presented. Adding Condition A, Hélder inequality and
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power mean inequality enhances the appeal of this portion. We sum up this portion with recalling
Caputo-Fabrizio derivative operator, and ABFIO that are needed in our assessment.

Definition 2.1 ([15]). A real-valued function A is said to be convex, if

Alsra+(1=3)rp) <3A(ra) +(1-3) Alry),
holds for all rq,rp € I and 3 € [0, 1].
The most famous inequality involving convex functions is the H-H inequality [12] stated as follows.

Theorem 2.2. If A: [rq,rv] — R is a convex function, then

b
A (;aﬂtb) <t J Al)dx < Alra) +Alry)

2 b —ZXa Jy, 2

Raina [19] proposed a family of functions formally stated by
(0, p(1) < plv)
o] — plU), plL),... _ k
REo(z) = REe"* " (2) kZ_O ki ol (21)

where p = (p(0),...,p(v),...) and €,0 > 0,]z] < R. Equation (2.1) is the extension of classical Mittag-
Leffler function. If e = 1,0 =0, and p(b) = % fork =0,1,2,..., where «, 3, and y are parameters,

which can take arbitrary real or complex values (provided that v # 0,—1,—2,...), and the symbol oy
denotes the quantity

Mo+ k)

=ofa+1)---(a+k—1), k=0,1,2,...,
Mo

() =
and restricts its domain to |z| < 1 (with z € C), then we have the classical hypergeometric function, that is

+o0
o Z (kB 1
R(CX, BIY/Z) _k:() k' Y)k z.

Moreover, if p = (1,1,...) with e = &, (Re(x) > 0),0 =1, then
“+o00 Zk

(’3“(2) = m

k=0

(2.2)

Equation (2.2) is referred to as a classical Mittag-Leffler function. The Mittag-Leffler function appears
usually in the study of fractional calculus and especially in the studies of fractional conjecture of the
kinetic equation, super diffusive transport, random walks, Lévy flights, and in the studies of complicated
structures. Cortez presented the generalized convex set and the convex function pertaining to Raina’s
function in [22, 23].

Definition 2.3 ([22]). Let p = (p(0),...,p(v),...) and €, 0 > 0. A set X # () is said to be generalized convex,
ifra +3RE ot —ra) €X, forall rq,rp € Xand 3 € [0,1].

Definition 2.4 ([22]). Let p represent a bounded sequence then p = (p(0),...,p(v),...) and €,0 > 0. If
real-valued A holds the following inequality

A(ra+3R2 o(r0 —ra)) < 38(0) + (1 - 5)Alxa),

for all rq,rp € X, where rq < rp and 3 € [0, 1], then A is said to be generalized convex function.
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Remark 2.5. If R2 ;(xp —ra) = tb —ra > 0, then we achieve Definition 2.1.
The following Condition A first time explored by Ahmad et al. [2].

Condition A. Let X be generalized convex subset w.r.t. R2 ;(-). For any rq,1p € X and 3 € [0, 1],

RE & (xa — (ra +3RE 5 (xv —zca))> = 3R 5(tb —ra),

R & (xb — (ra +3R2 o (b —ta)) ) = (1-3)RL ;(to —ra)-

Note that, for every rq, rv € X and for all 31, 32 € [0,1] from Condition A, we have

RE & (xa +52R8 5 (to —ta) = (ra +51RE 5 (tv —zca))> = (52 —31)R2 5 (b —Ta)-

Some well-known integral inequalities such as Holder inequality and power-mean inequality will be
used.

Theorem 2.6 ([14]). Assume that p > 1 and % + % = 1. Assume that A1, A, : [x1,%2] — R are such that |Aq|P
and |Ay|9 are integrable on [x1,x3]. Then

[t ([ 1aoora) ([ mwna)

If we get |Aq]|Ay] = (\Allé)(lAllé\Azl) in the Holder inequality, then we obtain the following power
mean integral inequality as a simple result of the Holder integral inequality.

Theorem 2.7 ([14]). Assume that A > 1 and % + % = 1. Assume that A1, A> : [x1,%2] — R are such that |Aq|P
and |A|9 are integrable on [x1,x3]. Then

1

[ ianoastias < ([ meoie) ™ ([ miax [ 1azrea) -

0 0
Many mathematicians with the development of fractional calculus have defined many fractional
derivative and integral operators to find solutions to real-world problems. Some of them are as follows.

In Caputo-Fabrizio (C-F) derivative operator, Atangana and Baleanu utilizing the Mittag-Leffler func-
tion and investigate the new derivative operators as follows.

Definition 2.8 ([4]). Let A € H!(za,1p),50 > ta,w € [0,1), then the definition of the Caputo-Fabrizio
derivative is given by

ABCD®[A(L)] = B(w) Jt AN (x)Eq [_‘”M] dx. (2.3)

Definition 2.9 ([4]). Let A € H!(zq,1p), 10 > ra, @ € [0,1), then the definition of the Caputo-Fabrizio
derivative is given by

t _ w
ABRDEIA(Y)] = f(_“iljt La A(x)Eq {—w((tl_"(l)] dx. (2.4)

Equations (2.3) and (2.4) have a non-local kernel. Also in equation (2.3) when the function is constant
we get zero.
The related fractional integral operator has been defined by Atangana-Baleanu as follows.
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Definition 2.10 ([4]). The fractional integral associated to the new fractional derivative with non-local
kernel of a function A € H!(rq, 1p) is defined as

t
ABIOA (1)) = A(t)+(w)J Aly)(t—y)*dy,

where b > a, w € (0,1].

In [1], Abdeljawad and Baleanu introduced right hand side of the integral operator as follows. The
right fractional new integral with ML kernel of order w € (0, 1] is defined by

ABtw 1— w fv w—1
(A1) = - PAq) +WL Aly)(y — ) dy.

3. Generalized m-convex involving Raina’s function and its properties

Here, we shall introduce and explore the new definition, i.e., G,y CRF, an interesting and useful concept
for convex functions and examine some of its algebraic properties.

Definition 3.1. Let p = (p(0),...,p(v),...) and €,0 > 0. A set X # () is said to be generalized m-convex, if
mrq +3RE,o(xp —mra) € X, for all xo, 1 € Xand 3, m € [0, 1].

Definition 3.2. A function A defined on the generalized m-convex set X is said to be generalized m-convex
involving Raina’s function, i.e., G, CRF, if

Almeq +3R2 S(xp —mpa)) <M (1—3) A (ra) +3A (rp)
holds for every rq, 1 € X, m € (0,1] and 3 € [0, 1].

Remark 3.3. If m = 1 and R 5(xp — Mra) = b — Mrq, then Definition 3.2 reverts to the idea of convex
function, which was investigated by Niculescu [15].

Note that every convex function is G, CRF, but the converse does not hold in general.

Here, we are going to introduce the new condition, namely extended condition A, in the following
way.
Extended Condition A. Let X be generalized m-convex subset w.r.t. R ;(-). For any rq,rp € X and
3€[0,1],

R2 o (ta — (Mrq +3RE o (16 —mra)) ) = =R o {ry — mea),
R2 & (zcb — (mra +3R8 5 (ro — mra)) ) = (1-3)RL ;(tp —Mmra).
Note that, for every rq, rv € X and for all 31, 32 € [0, 1] from extended condition A, we have
R2 & (mzca +52R8 o (ro —Mra) — (Mra +51RE (v — mzca))) = (32— 31)RE & (xb — Mra).
We are going to look at and develop a few properties of the recently presented concept.

Theorem 3.4. If Ay, Ay are two G CRF, then (A; + Ay) is also an G CRF.
Proof. Since given that A; and A; be two G, CRF, then

(A1 +Az) (mrq +3RE (ro — Mia))

Ar(mpg +3RE o (rp —Mra)) + Az (mrq +3RE ;(rp —Mra))
(1—3) A1 (ra) +3401 (xp) + M (1 —3) Az (ra) + 342 (zb)
(1—3) [A1 (za) + A2 (xa)] +5[A1 (xp) + A2 (xp)]

(1—3) (A1 +A2)(ra) +3(A1 + A2)(xb)-

This is the required proof. O

N

m
m
m
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Theorem 3.5. If A is G, CRF, then (cA) is also an G, CRF.

Proof. Since Ais G, CRF, and c is any constant number, then

(cA) (mra +3RE o (rp —Mra)) < C<m(1 —3) A(ra) +3A (o )
=m(1—=3)cA(ra) +3cA(rp) = m(1—3)(cA)(ra) +3(cA) (rv).
This completes the proof. O

Theorem 3.6. Composition of two G CRF is also an G, CRF.

Proof
(A2 0A1) (mpa + 3R 5 (rp —Mmra)) = Ao(Ar(Mmra +3RE 5 (vo —Mra)))
<A (m(l—a)Al (ta) +341 (zcb)>
< m(1—3) A2(Aq (ra)) +582(A1 (b))
= m(1—3) (A20A1) (ra) +3(A2041) (1)
This is the required proof. O

Theorem 3.7. Let 0 < rq < tv, Aj : X = [rq, 6] = [0, +00) be a family of G CRF and A(u) = sup; Aj(u).
Then, Ais an Gy CRF for m € (0,11, 3 € [0,1], and U ={A € [rq, rv]) : A(A;) < oo} is an interval.

Proof. Lettq, 1o € U, m € (0,1] and 3 € [0, 1], then
A(mga + 3R 5(rp — Mra)) = sup Aj(mra +3RE ¢ (vo — Mra))
j

<m(1—3)supAj(ra) +3supAj (rp) = m(1—3)Alra) +34 (rp) < o0
) )

This is the required proof. O
4. Hermite-Hadamard inequality via generalized m-convex involving Raina’s function pertaining to
AB fractional integral operator

The main goal of this portion is to provide a new sort of the H-H-type inequality for a G, CRF via
ABFIO.

Theorem 4.1. Let I C R be an open and non-empty m-convex subset and rq, 1, € L with mrg < mrq +R2 5 (xp —
mrqa). If A [mea, mra +REo(rp —Mia)] = Risa GCRF, A € L [myq, mpa + RE o (10 — mya)], and RE o
satisfies extended condition A, the following inequalities for ABFIO hold

A <2m?a + Rg,c(sz - m?a))

2
<3 [Rgi((z)r_(:;a”w (A8 19 {A (mra + R o vy —mea)) } +APIE, o o (A Gmea)l] @)
(1—w)lMNw) mA (ra) + A (rv)

J— p _
2 [RE o (rp —mra)]© (A (mea) 4 (mea F REalro —mea))] <

2 4

where w € (0,1], B(w) > 0 is normalization function and T'(.) is Gamma function.
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Proof. Since rq,rp € I and I C R be an open and non-empty m-convex subset with respect to I, for every
3 € [0,1], we have mrq + RE 5(rp — mra) € L. By the property of G CRF on [mrq,ra + RE o (rv — mra)],
we have for every x,y € [mrq, mrq + RE o (rp — mra)] with 3 =1,

a(x Raly - ™)) < A+ Ay

7

ie, with x = mpq + (1 —3)RE o (rp — Mra) and y = mrq + 3RE ¢ (rb — Mrq), using extended condition A,
we get

RE (Mrq +3RE o (xp — Mra) —Mrq + (1 —3)R2 o (1 — mzca)))
2
(23 - 1)922,6(?b - m?a))
2

2A <m?a + (1 _3)R2,c(?b - m?a) +

(4.2)

_ oA (2mxa + R0 (rp — Mra)

> ) <A (Mmra+(1—3)R2 o (ro —mra)) + A (mra +3R2 5 (1o — Mra)) -

Multiplying both sides of the above inequality (4.2) by Wgwfl, then integrating the resulting
inequality with respect to 3 over [0, 1], we obtain

2, <2mzca + R 5 (xp — mzca)>
B(w)lw) 2

1
Blw)F (@) Jo 37A (Mmra +3R2 o (ro — mra)) d3

L w—1 . o B
B(w)r(w)Lt A (mra+ (1—3)R ,(ro — mra)) d

W mea+ﬁg,o(;b—mxa)

B(w)lMw) [Rg,c(xb - m?a)] ¢
w J’mxa"‘jzg,c(?b_mFa)

B(w)M(w) [RE ¢ (rp — mra)]®

(x—1a)¥ " Ax)dx

Mta

—1
+ (Mrq + R o (ro —mra) —y)“ Aly)dy.

meq
Then we can write

2, <2mzca+9%2,a(zcb —mzca)>

B(w) (@) ;

M RE— [B(wjur(w) [ s st G a v
Blw) [ﬂa"(l(_x:) . e )

" Reolre 1—mxa)}“’ [B(w?vr(w) J::Rgmw (MFa +RE o ro —mra) —y)“ " Aly)dy

+ %(—wu;)A (mra +RE o (1w —mzca))] B [332(,1&:)—) mxa)}“’A (Mra+RC o (ro —mra)) -

So, using ABFIO, we get

2, (2mzca + R o (to — mzca)>
B(w)lM(w) 2
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1 AB Tw p ABrw
< Rt o (el {8 (st RE oo —msa) b+ AP (g, 14 )]

(1-w)
- Afmra) +A (mra +RE o (t0 — mra)
B(w) [szz,o(xrmpa)}“’[ )+ (mea + REo )]
and the first inequality is proved. For the proof of the second inequality in the above inequality (4.1), we
first note that if A is a G,y CRF, then we can write

A (mrq +3RE 5(xp —mra)) < M(1—3)A(ra) +3A (xv)
and
A (mra+(1—3)RE ;(rp —mra)) < M3A (ra) + (1—3)A (b))
By adding these inequalities side by side, we have

A (mrq +3RE o (xp —mra)) + A (mra + (1 —3)RE 5 (rb — Mra)) < MA (o) + A (b)) - (4.3)

Then, multiplying both sides of the above inequality (4.3) by Wg““l and integrating the resulting
inequality with respect to 3 over [0, 1], we obtain

1
L w—1 ) .
B(w)l(w) Lﬁ A (mra +3RE o (xo —mra)) da

1

w—1 w
ST L 071 (s + (1= )R (s~ ma)) d < s

Then, we can write

1

A (o) + A (rp)] L 597 1d;.

Jr

1 AB AB
T —s (A1 {A (mra + R ot —mra)) }+APIE, ge (oe) 1A (mea))
(1—w) mA (ra) + A (rv)
— A A RP — < .
Blco) [RE o (1 —mea)]® ) A (et REolro = mral)] < T i)
So, the proof of this theorem is completed. O

Remark 4.2. Choosing m = 1 and R¢ 5 (rp — Mra) = rp — Mrq in the above theorem, we have the result in
[9, Proposition 2.1], inequality (13).

Remark 4.3. Considering Theorem 4.1, we establish the following new mathematical approach of H-H
inequality pertaining to the classical Mittag-Leffler function via ABFIO if we pick p = (1,1,...) with € =«
and o = 1:

A <2mxa + Cq(rp — m;a)>
2

B(wl(w) a8 jw .
T2 [Ealry — mIa)]w [mIaI {A(mrq + Exlre —mrg))}+ Imzca+@oc(zcb—mxa) {A (mra)}

(1-w)lw)
— A A ¢ — <
1€ (to — mra)]® [A(mra) +A(mra + €xlre — mra))l
If in Theorem 4.1, we put R ;(r, — Mrq) = 'y — Mrq, then we get the new variant of H-H integral
inequality involving convexity via ABFIO.

mA (ta) + A (rp)
2 7

Theorem 4.4. If A : [mpq,rv] — R is a m-convex function and A € L[myq,rvl, the following inequalities for
ABFIO hold

a(Treree) o DD fan oo ) 44712 (4 (mea)l] -

< mA (zca)2+A(zcb)_

(1—-w)lMNw)
2[(ro — mra)l®”

(A (mgq) + A(rp)]
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5. Refinements of H-H-type inequality via AB fractional integral operator

This section’s goal is to explore and offer a novel equality. We derive some novel enhancements of
H-H-type inequalities using an ABFIO based on this recently studied equality. To improve the content
and grab readers’” attention, we include a few remarks. First, we prove a lemma in the frame of ABFIO.

Throughout in this section, B(w) represents the normalization function and I'(.) represents the Gamma
function.

Lemma 5.1. Let I C R be an open and non-empty m-convex subset and rq, 1, €  with mrq < mrq + R2 o (rp —

myq). Suppose that A : 1 — R be a differentiable function. If A’ € L [mga,mxa + R 5(rp — m;a)], the following
identity for AB fractional integral operators holds

B(w)lNw)

[:Rg,cr(xb — Meq

iRg(r - a © 1- r
B <[ | (;[;zp sz)—}mjg]wf) M) [A(mra) +A (mra +RE 6 (k0 — mra))]

o (A8 1% {A (mra +R2 g ro —mra)) } +AP1E, no ey (8 (M)}

1 1
= JO (1—3)CA" (mra +3R 5(rp —mra)) d — L 3CA (mrq +3RE o (ro — mra)) d3,

where w € (0,1],3 € [0,1].

Proof. By using integration, we have

1
JO (1—3)CA" (mra +3RE o (xp —Mra)) d3

1
(1—-3)°A (mxa +5ngc(Fb_mFa)) w Jl 1
= - A (mra +3RE 5 (tp —mra)) (1—3)%""d;
Rg,a(?b —Mmiq) 0 fRpe),cf(lfb —miq) Jo ( ¢ «o ¢ ) (5 1)
mA (ta) w r 1 .
=— + (1—3)Y""A(mrq +3R2 o (rp —mra)) d3
RE o(rp —Mmra)  REo(rp —mra) Jo (mea +5R8 0 a))
mA w mra+RE & (rp—mra) i
__mAla) = (mea +RE o(tp —mra) — )  Alo)dx.
Re,oltp —mra) [ng,o(Zib - m;a)} Mrq

If we multiply both sides of the above inequality (5.1) by m, we get

1 1
J (1—3)A" (mra +3RL (v —mra)) d3

B(w)(w) Jo
. A(mgq)
B(w)M(w)RE o (xp — mra)
w mFaJng,U(Fb*mXa)( 20 | | )w_l 0
+ J mrq + Ip —Miq) —X A(x)dx.
B(w)M(w) [RE oty — mea)] " Jmea ¢ Teo @

Then, we can write

m J() (1 _3)wA/ (mga +3‘[Rg,0(xb — m;a)) da
_ A (mgq)
B(w)MNw)RE & (rp — mrq)
1 Mra+RE s (rp—mra) o
[Rp (Fb —my )] w+1 [B(w?;ﬂ(w) Jm; (m}‘a + Rg,c(zzb - m?a) _X) ! A(X)dx
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(1—w) (1—w)
+ A (mrq +RE 5 (o —mrd)) | — A (mrq + R, (rp —Mia)) -
B(w) . B(w) [RE oty —mra)] " -
Using ABFIO, we have
1Jl(l— )YA" (mra +3RE o (ro —Mra)) d
B(w)r\(w) 0 5 ?a 5 €,0 Fb ?a 3
el e [P {8 (e + R o~ mra))}] (52
Blw)lw)Re,olte —Mra)  [RE o(rp —mra)]” " ¢ ' '
(1-w)
— A (mrq + R, (o —Mrd)) .
B(w) [RE oty —mra)] " “
Similarly, using integration, we get
1
JO 3N (mpa 43R 5 (rp — Mra)) d3
1
3PA (mra + 3R 6 (ro — mra)) w Jl .
— ’ — A (mrg +3R2 (rp —mra))3Y 4
R (o — Mrq) o Reolte —mra) Jo (o +3R2o ro al) 3ds 59
A (mpa + R 6(re —Mrq)) w Jl w1 '
_ . — A (mpq +3R2 ,(rp —mig)) d
Q (rv,ra) Rg,c(?b_m?a) 05 ( o Ti%e ol ¢ ) )
A +RP _ mia+RE,o(rp—mra)
_ Almea +Hoolto —mra)) _ R J (u—mra) " Af)du.
Re,c(?b - m;a) [Rg,o(?b — mpa)] mrq

If we multiply both sides of the above inequality (5.3) by —m, we have

1 1
_ W JO 3"UA/ (m}:a +3R2,6(Ib —m;a)) dj

_A (mxa + Rg,c(?b - m?a))
B(w)lM(w)RE ¢ (xp —Ma)
w mea‘Fng,c(Fb_man

B(w)T(w) [RE o (xp —mza)]“ ™

+ (u—mra)® T A(u)du.

Mla

Then we can write

1 1

A (m}‘a“‘j{g,c(?b _m?a))
B(w)M(w)RE,o(xp — mra)
1 w mrq+RE o (rp—mra)
[iRg,U(?b _mﬁa)] @t [B(w)r(w) J
(1—w) ] (1—w)
A(mrg)| —
Blw) 4™ ) [RE o (xp —mra)] "

(uW—mrqa)? ' A(u)du
Mra

A(meq).




M. Tariq, S. K. Ntouyas, W. Afzal, J. Tariboon, J. Math. Computer Sci., 41 (2026), 244-263 254

Using ABFIO, we have
- rza“’A/ (Mra +3RE o(rp —Mra)) ds
B(w)T(w) Jo ¢ oTee ¢
A (mrq +RE 6 (ro —Mra)) 1 AB 1
- B(WN(W)RE oo —Mra) R 4 (rp — mrq)] “ ! [ et -mee) 14 (mzca)}} o4
(1—w)
- A(meq).
B(w) [RE o(rp — mra)] "
By adding identities (5.2) and (5.4), we obtain the proof of Lemma 5.1. O

Remark 5.2. 1f we put R 5(tb —Mrq) = b — Mrq and m = 1 in Lemma 5.1, then we have the result in [9,
Theorem 3.1], equality (29).

Theorem 5.3. Let I C R be an open and non-empty m-convex set and rq,rp € 1 with mrq < mpg + RE 5(rp —
myq). Suppose that A : 1 — R is a differentiable function and A" € L [mga,mxa + R 5 (1o — mzca)]. If |A'] is
Gm CRF, then we have the following inequality for ABFIO
B(w)l'(w)
[RE 5 (ro — mra)]
R (ro —mra)] " + (1— W) (w)
— <[ i a] — [A(mra) + A (mra +R2 o (ro — mra))]
[Re,c(?b - m?a)]

o mIA (xa)l+ 1A (xv)
= w—+1

w+1 {nAmEaIw {A (mﬁa + ng,o(Zib - mFa))} + ABI;UIFGJFRQ,U(;b,m;a) {A (mxa)}}

4

where w € (0,1].
Proof. By using the identity given in Lemma 5.1 and the properties of modulus, we can write

B(w)l(w)
[RE & (rp — Mmra

Rgc - a @ 1- r
(P st )

o [AB 19 {A (mra +R2 g lro — M) } + P18, ne gy (8 (M)}

1 1
JO (1—3)CA" (mrq +3R2 5 (ro — mra)) dz — L 3CA (mrq + 3R 5 (rp — Mra)) d

1

1
< L (1—3) |A" (mra +3RE (v —mra))| ds + L 39 |A" (mra 43R 5 (v —mra))| d3.

Since |A’| is G, CRF, we obtain
B(w)l'(w)
[Rg,c(?b — MIq

Rgg - a @ 1- r
(O ——

) w1 [ﬁgalw {A (mra +REo(rp —mra)) } + ABITC;)LIa+R2,G(Fb_mFa) {a (mxa)}}

1

1
< L(l—z)“’ [(m(1—3)|A" (xa)|+3|A (x0)]] d5+J03“’ [(m(1—3)|A" (xa)| +3|A (xv)|] d3

_ mIA (ra)[+1A" (0]
w+1 '

So, the proof is completed. O
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Remark 5.4. Considering Theorem 5.3, we establish the following new mathematical approach of H-H
inequality pertaining to the classical Mittag-Leffler function via ABFIO if we pick p = (1,1,...) with e =«
and o = 1:
B(w)l'(w)
[€alro —mra)]
B ([ea(xb —mga)]® + (1 w)l(w)

o [ﬁ‘ial“’m (mra + Calro —mra))}+*PIS, e (romea) 1A (mxa)}]

) [A(mgq) +A(mrq + Exlry — m?a))]‘

[€arp — mrg)]¢ ™
_ A (g + 1A ()
= w-+1 '

Corollary 5.5. In the above Theorem 5.3, if we choose R2 o(ry — Mrq) = rp — Mrq, then we obtain

BIWITI®)_1AB 10 (A (1)} + ABI% (A (meq )]
(rb — Mra)
(o —mra)® + (1 - w)l(w) m|A (xa)| + A ()]
- ( T ) [A(mra) +A(rp)]] < o+l :

Theorem 5.6. Let I C R be an open and non-empty m-covex set and rq,rp € 1 with mrq < mrq + R o (xp —
mrq). Suppose that A : 1 — R is a differentiable function and A' € L[mga,mxa +R2 & (rp — mzca)}. IfIA'|Visa
Gm CRF, then we have the following inequality for ABFIO:

B(w)lM'w)
[Rg,c(?b - mxa)]

:Rgd - a “ 1- r
(Pt s |

1 ’ q / q &
) 1 P mIA (r)T A (xp)[7 ) @
wp +1 2 '

wherep ' 4+q~1=1,9q>1,w € (0,1

o7 [T {A (mra + R o v — M) }+API, ne gy (8 (M)}

Proof. By using Lemma 5.1, we get

B(w)l'(w)
[‘{Rg/(f(xb — Mla
B < [R2 o (x5 —Mea)]“ + (1 — w)(w)

[:Rg,(r(ﬁb - m?a)] W

mra+Re o (rp—mra

o (A2 19 {A (mea +RE o (16— mea)) } +AP1L, e (6 (mea))]

) [A(mza) + A (mpa + R o (x6 — ma))] ‘

1 1
< L (1—3)“|A" (mra +3R2 o (xp —mra))| dz + L 39 |A" (mrq +3R2 (e — mra))| 3.

By applying Holder inequality, we get

B(w)l'(w)
[Rg,c(ﬁb — Mga

ngo- - a @ 1— r
T s

o [RP19 (A (mra + R g lvo —mea)) }+ APIE, no (o (A (mea))
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1 % 1 a
< (J (1—3)‘”"(13) <J A (mya + 3R 6 (r0 —mra)) | dé)
0 0

1
1 P 1 q
+ (L 3P dz) (L A" (mra +3RE o (xp —mra)) | dz)
By using G, CRF of |A’|9, we obtain

BOIF(@) (a5 - .
‘W |:mFaI {A (mxa + Rg,o'(xb N mra))} T Imxa"‘j%g,c(?:b—mxa) {A (mxa)}:|

:Rgc - a ¢ 1- r
ot et

1 1

1 P 1 q
< <J (1—;,)“’pd5> (J [m(1—3) A (xa)|? +35|A (x6)] ] ds)
0 0

1 % 1
+ <J 3‘°pd5> (J [m(1—3) A @a)|? +35 |4 (x6)] 9] dz)
0 0

By calculating the integrals in the above inequality, we get the desired result. O

al—

Remark 5.7. Considering Theorem 5.6, we establish the following new mathematical approach of H-H
inequality pertaining to the classical Mittag-Leffler function via ABFIO if we pick p = (1,1,...) with € =«
and o = 1:

B(w)l'(w)
[Goc(xb - m?a)]

. [ecx(xb_m?a)]w‘i'(l_w)r(w)
[Goc(?b _mxa)]erl

2 () >5<m|A'(;a)|q+|A'(;b)|‘1>5
wp+1 2 '

Corollary 5.8. In the above Theorem, if we choose R2 (rp — Mrq) = rp — Mra, then we obtain

ot [ LA (Mg + Ealro — e} APIS, e (e (A (MEa))

) [A(mgq) +A(mrq + Exlrp — mzca))]‘

B(w)(w) N o
e [T (A )+ AP (A ()

(rp — mra)® + (1 — W)l (w) 1 \" (1A (mea)l? + A7 (rp)]9\ @
_< (1o — meg) ! )wma”w"” <2(gpr1) 2 )

Theorem 5.9. Let I C R be an open and non-empty m-convex set and rq,rp € 1 with mrg < mrg + RE 5 (rp —
mrq). Suppose that A : 1 — R is a differentiable function and A' € L [mrq, mra + RE o(rp — mra)]. If [A'| is a
Gm CRF, then we have the following inequality for ABFIO:

B(w)lNw)

[Rg,o(Xb — Mlaq

TREG - a @ 1— r
M

oI {A (Mg + RE o6 —mra))} +APIE, o o e 1A (M)}

)] w+1 [
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1\«
< -
(w—i—l)

where w € (0,1],q > 1.

<m|A’(zca)|q A ()] )5+< mIA (rq)]® +|A'(zcb)|q>3
w42 (w+1)(w+2) (w+1)(w+2) w+2 !

Proof. Employing Lemma 5.1 and utilizing the power mean inequality, we get

B(w)lNw)
[:Rgrff(?b — Mq
o < [ng,a(sz - m?a)] “ + (1 — (,U)r(w)

[:Rg,c(xb - m?a)] Wi

o (A2 19 {A (mra + R g ro — M) }+ P18, ne gy (8 (M)}

) [A(mra) + A (Mra +RE 5 (16 —Mra))] |

1

1
< L (1—3)|A" (mra +3RE o (ro —mra))| ds + L 39 |A" (mra + 3R 5 (vo —mra))| d3

1
q

1 17% 1
< (J (1—3)“’d5> (J (1—3) |A" (mrq +3RE 4 (o —mya))|? d3>

0 0

1 =3/ 3
+ L 39d3 L 3 A (Mra +3R2 o (xo —mra)) [V d;s |
By using G, CRF of |A’9, we have
B(w)lNw)

[ng,o(?b - m?a)]

ngo- - a @ 1— r
() st

1 =3 /a1
< (J (13)“’d3> (L(la)“’ [m(1—3) A" (xa)|? +35|A" (x0)|"] dt)

w—+1 [ﬁgalw {A (mxa + :Rg,o'(xb - mxa))} + ABITUTJLJCaJrR‘e),U(Fb*mxa) {A (mxa)}:|

o=

0

1 -4 /4 3
+ (J 3“’d3> <J 39 [m(1—3) A )| +35 A (o)] Y] d?a)
0 0

1\«
- <w+1)

Th proof is completed. [

<m|A'(;a)|q A ()] >5+< mIA (rq)l +|A’(xb)|q>3
w+2 (w+1)(w+2) (w+1)(w+2) w+2 '

Remark 5.10. Considering Theorem 5.9, we establish the following new mathematical approach of H-H
inequality pertaining to the classical Mittag-Leffler function via ABFIO if we pick p = (1,1,...) with € =«
and o = 1:
B(w)lMw)
[€o(xp —mya)]
[ [€xlrp —mra)]® 4+ (1 - W)l (w)
(€ (rp —mpa )]

1\«
< -
<w+1>

o7 eI A (Mg + Ealre — e} A1 e omeg) (A (Mra))

) [A(mgq) +A(meq + Exlrp — m?a))]‘

<m|A’(xa)|q A ()] >5+< mIA’ (xq)|f +|A'(zcb)|q>3
w+2 (w+1)(w+2) (w+1(w+2) w+2 ’
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Corollary 5.11. In the above Theorem, if we choose RE +(rp — Mrq) = Iy — Ma, we obtain

(x B((:)w)lz(c)vu))ﬂ (e I HA (e0)} + AP I A (mpa))]
b — a
B ((zcb —n(lxa) nj;(;"_ﬁ)r(w)) (A (miq) +A(Ib)]‘
b— a

1V [ el | I @)l G (A (el 1A () @
< ( ) < fa Iv ) ( Mrq L 1A (w >
w+1 w42 (w+1(w+2) (w+1)(w+2) w42
Theorem 5.12. Let I C R be an open and non-empty m-convex set and rq,rp € 1 with mrg < mrq + RE 5(rp —
mra). Suppose that A : 1 — R is a differentiable function and A' € L [mrq, mra + RE o(rp — mra)]. If [A'| is a
Gm CRF, then we have the following inequality for ABFIO:

B(w)lMw)
[RE & (rp — Mra
B ( [RE,o(rp —mra)]” + (1 — w)l(w)
[RE o (xp — mra)] "
o 2 m A (o)l + 1A (b))
~ plwp+1) q
wherep 14+ q~1=1,9q>1,w € (0,1

)] wr1 [nAlliaIw {A (mIa + :Rg,cy(xb - m?a))} + ABI:;;(}_,_(RQ,U(%_m;u) {A (m?a)}}

) [A(mra) + A (Mra +RE 5 (16 —Mra))] |

4

Proof. By using the identity given in Lemma 5.1 and applying the Young inequality xy < %xp + %yq, we
get

B(w)lM(w)
[:Rg,(r(?b - m?a)]

ngg - a @ 1- r
(P st )

w1 [ﬁ?alw {A (mIa + ng,a(Zﬂb - m?a))} + ABITC;)L;u+IRQ,G(;b—m;a) {A (m?a)}}

1

< | (1=3)9|A (mra +3RE o (xp —mra))| ds + L 39 |A (mra + 3R o (xp — mra))| d;.
1 1 1

< L (1—3)“Pd;+ qJ |A" (mrq + 3R o (ro —mra)) | d

1
)
1
P 0
+

1 1!
pJo 3Pd; + qu ’A, (mra + 3R 5 (rv _mxa))’q ds-

By using Gy, CRF of |A’ |9 and by a simple computation, we have the desired result. O

Remark 5.13. Considering Theorem 5.12, we establish the following new mathematical approach of H-H
inequality pertaining to the classical Mittag-Leffler function via ABFIO if we pick p = (1,1,...) with € =«
and o = 1:

B(w)M(w) . )
[Goc(xb _ m},a)]w+1 Ql]?al {A (mxa + Ga(;b - mz:a))} + ABIm}:a+Q(1:b,;a] {A (m;a)}}

_ <[€oc(?b[;oszaﬂ m;ra(ﬁ;‘f)r(w)) [A (mra) + A (mra + R o (ro —mia))] |

< 2 N m|A (ra)|T + 14 (?b”q.
plwp+1) q
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Corollary 5.14. In the above Theorem 5.12, if we choose RL o (rp — Mra) = Iy — Mq, we obtain

BLOITIW) A 1o (A (1)) + AT (A (mra)]

(rp —mra)

o)+ (1 - w)l(w) 2 A (mpa)l + 147 (1)1
( (f— mea) 7! ) Amea Al < Sigp i ¥ q |

6. Pachpatte-type inequality via AB fractional integral operator

In this section, we study and explore the Pachpatte-type inequality via ABFIO. We enhance this sec-
tion’s utility through the notes that are provided.

Theorem 6.1. Let I C R be an open and non-empty m-convex set and rq,rp € 1 with mrq < mpg + RE o(rp —
mrq). If Ay, Ay [mrq, mrq +RE o (rp —mra)] = Rare G CRF, A, Ay € L [mrq, mrq +RE 6 (ro — mra)],
then the following inequality for ABFIO holds:

1
[RE & (xp —mra)]

w 2 1
< Bl (@) |:[A1 (mra) Az (mpa) +Aq (xv) Az (1) <w(w+1)(w+2) + w+2)
m[Aq (xa) Az (xv) + A1 (xv) A2 (?a)]:| (1—w)

(w+1)(w+2) B(w) [REo(rp —mra)] ™

+ A1 (mra + R o (ro —mra)) Az (Mrq + RE o (xrp — Mia)) }

AB
Mla

mra+RE(rp—mra

1€ {A1Ay (myq + R o (xp —mra)) } + API® | A1, (mzca)}]

+2 [A1 (Mmra) Ap (Mrq)

where w € (0,1].

Proof. Since A; and A; are G, CRF on [mxa,mzca +RE 5 (rp — mzca)], we get

A1 (Mg +3R2 5 (1o —mra)) < mM(1—3)A1 (xa) + 341 (2v) (6.1)

and
Ao (mrq +3RE o (ro —mra)) < m(1—3)A2 (ra) + 342 (rv) - (6.2)

By multiplying both inequalities (6.1) and (6.2) side by side, we get

A1 (mra +3RE o (o — Mra)) Az (Mra + 3R 5 (xp —Mra))

6.3
<M (1—3)%A1 (ra) A2 (xa) +35°A1 (1v) A2 (rv) + M3(1—3) [A1 (ra) A2 (x6) + A1 (x6) A2 (xa)] - (63)

By multiplying both sides of (6.3) with (1 —3)“~! and integrating the resulting inequality w.r.t. 3 over
[0, 1], we obtain

1
JO (1—3) A1 (mra +3RE o (ro — Mra)) Az (Mra +3RE o (ro —Mra)) d3

1
< | =3 [ =50 (50) A2 (1) + 80 50 A (1) 64

+m3(1—3) (A1 (ra) A2 (rv) + A1 (r6) A2 (ra)ll d3

~ m?A; (ra) A2 (2a) Aq (rp) A2 (rv) | M A7 (ra) A2 (xv) + A1 (1v) A2 (2a)]
N w+2 w(w+1)(w+2) (w+1)(w+2) )
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By changing the variable myq + 3RE 5 (rp — Mrq) = X, we can write the inequality in (6.4) as

w (1+:R2(7 - al— wilA A d
(R o (ro —mra)]” Jmra (mz olto = mea) =) el (6.5)

o m?A1 (ra) A (xa)+2 A1 (1) Az (xv) +m[A1 (ra) Az (xv) + A1 (xv) Az (xa)]
w42 w(w+1)(w+2) (w+1)(w+2) '

1 JmﬁaJF:Rg,c(Fmea)

(1-w)
B(w)[RE s (ro—mra)]
+RL 5 (rp —Mrq))A2 (mpa + R 5 (rp — mzca)) to both sides of (6.5) and finally using ABFIO, we get

By multiplying the both sides of (6.5) by gr;jrry and then adding the term oA (Mmiq

1
[Rg,c(?b — MlLa
w m2A; (ta) A2 (xa) A1 (ro) D2 (rv) | MIA1 (xa) A2 (Tn, M) + A1 (1v) Ao (2a)] 6.6)
B(w)l'(w) w42 w(lw+1)(w+2) (w+1)(w+2)
(1—w)
B(w) [Q (rv,ra)l®

e (A5 19 {A1 (Mra +RE o (to — M) }]

<

+ A1 (mrq +R2 o (tp —mra)) Az (mrq + R o (xp —Mira)).

Similarly, by multiplying both sides of (6.3) with 3! and integrating the resulting inequality w.r.t. 3 over
[0,1], we obtain

1
J 397AT (Mpa +3RE o (re — Mra)) Az (Mra +3RE o (1o — Mra)) ds
0

1
< L 371 [MP(1=3)%A1 (ra) A2 (xa) + 3741 (r6) Az (x6) + M3(1 —3) [A1 (ra) A2 (xv) + A1 (rv) A2 (xa)]] d3

B 2m2A1 (ra) A2 (ra) n Aq (o) Ao (rv) | MIA7 (xa) A2 (1) + A1 (1p) A2 (Xa)]
CTw(w+1)(w+2) w+2 (w+1)(w+2) '

By making calculations similar to those in the proof of (6.6), we obtain

1

= ABIw A1 A a
[zRg,G(?b*mxa)] [ ){ 142 (mga)}

mra+REs(rp—mra

< w { m2A1 (ra) B2 (tra) 501 (x0) A2 (x6)  MIA7 (xa) A2 (xb) + A1 (16) Ao (Zta)]] 6.7)
S B(w)TN(w) |"w(w+1)(w+2) w+2 (w+1)(w+2) '
(1—w)
AL (mra) Ay (mpa).
+B(w) [R5 (rp — mra)] Himea) & (mee)

Adding (6.6) and (6.7) side by side, we get

1 AB tw o) ABrw
LI {m;al {A142 (mra +RE ot —mra)) } +7PI0  me (0 ey (A182 (Mra))

w 2 1
< Blw)N(@) [[mzAI (ta) A2 (xa) + A1 (ro) Az (xp)] <w(w+1)(w+2) + w+2>

m (A1 (ra) Ao (xv) + A1 (xv) A2 (ra)]] n (1—w)
(w+1)(w+2) B(w) [RE o(rp —mra)]”

+ A1 (Mg + R o (rp — mra)) A (Mra + R 4 (o — Mra)) ] :

+2 [Al (mra) Ar (Mrq)

The proof is completed. [
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Remark 6.2. Considering Theorem 6.1, we establish the following new mathematical approach of Pachpatte-
type inequality pertaining to the classical Mittag-Leffler function via ABFIO if we pick p = (1,1,...) with
e=xand o0 =1:

1 AB "
ol —mral]® | mra | A12(mrat Eulro = mra))} 4+ AP Terme) (8142 (mFa)}]
< v [[A (mra) A2 (mra) + Ar (vy) A (¢ )]< 2 g )
S B(w)M(w) | F el F2 PRI P\ ww+ D(w+2) " w+2

m[Aq (ra) A2 (xv) + A1 (rv) A2 (Pa)]] N (1—w)
(w+1)(w+2) B(w) [Qfoc(?b_mxa)]

+A1 (m?a + eoc(?b - m}:a)) AZ (mxa + ch(xb - mxa)) } .

+2 © [Al (Mmra) Ar (Mrq)

Also, in the above Theorem 6.1, if we put RE ;(rp — Mrq) = rb — Mrq, then we get the new variant of
Pachpatte-type integral inequality involving m-convexity via ABFIO.

Theorem 6.3. If A1, Ay @ [mpq,rb] — R are m-convex functions, Ay, Ay € Llmrq,rvl, then the following
inequality for ABFIO holds:
1

(ro — mrq)®
w

[AB T®{A1A) (1p)} + APIL {A14A, (mrq)}]

b

< [A1(mzca)Az(mzca)+A1(xb)Az(zcb)](w 2 - L >

B(w)lM(w) (w+D(w+2) w+2
m[Aq (xa) Az (xv) + A1 (xv) Az (xa)] (1—w)

2 (@t 1)(w+2) %B(w) T

@ [A1 (mra) Ap (Mpa) + Aq (rp) A2 (zp)] .

7. Applications to entropy

Consider the exponential random variable E) with parameter A > 0, whose probability density func-
tion (PDF) is f(i) = Ae ™, u > 0. The Shannon entropy of E, is defined by

H(E)\) = — J:O f(p) log f(p)dp = — J;o Ae M log ()\e_)‘”) du.

Compute the Shannon entropy explicitly using standard integration,
H(E-) = —J Ae M (log A —Ap)dp
0

o0 o0 1
:—logAJ 7\6_7‘“dx+7\J Ane Mdx = —logA-1+A- = =1—logA.

0 0 A
Define the function A related to the integrand and consider
A(p) := —logf(n) = —log (?\64‘”) =Au—logA,

which is linear (hence convex) on [0, co). Choose the interval and Mittag-Leffler deformation and restrict
the domain to the compact interval

1
[Ia/ xb] = |:O/ }\:| .
Define the Mittag-Leffler type deformation

o0

B o) (1\"
RE (1) = Z T(ek+0) <7\> ’

k=0
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with parameters p(k) =1, e = x € (0,1), 0 =1, so that

o1y < B 1
Rap (7\) - ];) r(1§r o) e <>\>

the classical Mittag-Leffler function. Applying Theorem 4.1 to A. From the integral inequality theorem
for generalized-convex functions and AB-fractional integrals, we have the double inequality for m = 1:

2ra + R2 c(xb)) B(y)I'(v)
A ' <
< 2 S 2[R 6(xs)]”
(1—=v)T(y)

TRy A0 AR )] <

[0R? (1) A (R &(xb)) + RE & (x5)0A(0)]

A(0) + Alxs) @.1)

2

Substitute the values 1, =0, 1p = %, R &(1p) = Ex (%), and recall A(p) = Ap—logA. Thus,

A <E(x()1‘)) :?\-Eaz(;‘)—log?\,

2
and
A(0)+A(x)  (—logA)+(1—logA) 1—2logA
2 B 2 B 2
Therefore, inequality (7.1) becomes
Eq (% _
A “2(7‘) —log A < (fractional AB integral expression) < 122&.

This inequality provides fractional integral bounds on the entropy-related function A, linking fractional
calculus, Mittag-Leffler functions, and information-theoretic measures.

8. Conclusions

Authors and researchers from a wide range of fields have shown a great deal of interest in fractional
calculus. Convexity theory, on the other hand, has become an effective technique for creating novel
numerical models that make it possible to solve challenging issues in the applied and pure sciences. As
a result of continuous advancements, extensions, and applications, convex analysis and the inequalities
that go along with it are seeing a rise in research interest and popularity. In this work:

(1) first, we explored a new approach of H-H inequality via ABFIO with some remarks and corollaries;
(2) we introduced a new lemma, further, we discussed some new refinements of H-H inequality based
on newly constructed lemma;

(3) we introduced a new sort of Pachpatte-type inequality via a newly introduced concept in the frame
of the ABFIO.

Furthermore, the discussed inequalities can be explored within the frameworks of quantum calculus
and interval analysis. Notably, integral inequality is an rapidly evolving research area. The integration of
interval-valued analysis and quantum calculus into the study of integral inequalities is poised to captivate
scientists, offering exciting avenues for future exploration.
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