Constructing series approximate solutions of ordinary differential equations using the limit residual function method
Authors
M. Abu Kharrob
- Department of Mathematics, Faculty of Science, Zarqa University, Zarqa 13110, Jordan.
A. Burqan
- Department of Mathematics, Faculty of Science, Zarqa University, Zarqa 13110, Jordan.
A. El-Ajou
- Department of Mathematics, Faculty of Science, Al Balqa Applied University, Salt 19117, Jordan.
Abstract
This article offers analytical solutions in power series form for ordinary differential equations. It provides an effective tool for deriving accurate analytical and numerical solutions to these equations via the use of a novel analytical approach called the limit residual function method. The suggested technique demonstrates that an exact solution can be found when a pattern exists in the obtained series solution; otherwise, only rough estimates can be provided. By comparing our results with exact solutions to the problems we discussed, we conclude that the present approach is simple, easy, and effective for solving differential equations, given that the consequent series approximate solutions are in the closed form of the actual results.
Share and Cite
ISRP Style
M. Abu Kharrob, A. Burqan, A. El-Ajou, Constructing series approximate solutions of ordinary differential equations using the limit residual function method, Journal of Mathematics and Computer Science, 41 (2026), no. 2, 195--206
AMA Style
Abu Kharrob M., Burqan A., El-Ajou A., Constructing series approximate solutions of ordinary differential equations using the limit residual function method. J Math Comput SCI-JM. (2026); 41(2):195--206
Chicago/Turabian Style
Abu Kharrob, M., Burqan, A., El-Ajou, A.. "Constructing series approximate solutions of ordinary differential equations using the limit residual function method." Journal of Mathematics and Computer Science, 41, no. 2 (2026): 195--206
Keywords
- Functional analysis
- ordinary differential equations
- power series
- residual function
MSC
References
-
[1]
G. Adomian, A review of the decomposition method and some recent results for nonlinear equations, Math. Comput. Model., 13 (1990), 17–43
-
[2]
N. Anjum, J. H. He, Q. T. Ain, D. Tian, Li-He’s modified homotopy perturbation method for doubly-clamped electrically actuated microbeams-based microelectromechanical system, Facta Univ. Mech. Eng., 19 (2021), 601–612
-
[3]
T. Apostol, Calculus, Blaisdell Publishing, (1990)
-
[4]
M. Bohner, T. X. Li, Kamenev-type criteria for nonlinear damped dynamic equations, Sci. China Math., 58 (2015), 1445–1452
-
[5]
A. Burqan, A. El-Ajou, A professional semi-analytical method to construct series solution to singular and nonsingular differential equations, Alex. Eng. J., 115 (2025), 277–285
-
[6]
A. Burqan, M. Khandaqji, Z. Al-Zhour, A. El-Ajou, T. Alrahamneh, Analytical approximate solutions of Caputo fractional KdV-Burgers equations using Laplace residual power series technique, J. Appl. Math., 2024 (2024), 19 pages
-
[7]
M. Celnik, R. Patterson, M. Kraft, W. Wagner, A predictor-corrector algorithm for the coupling of stiff ODEs to a particle population balance, J. Comput. Phys., 228 (2009), 2758–2769
-
[8]
A. El-Ajou, O. Abu Arqub, Z. Al Zhour, S. Momani, New results on fractional power series: theories and applications, Entropy, 15 (2013), 5305–5323
-
[9]
A. El-Ajou, M. Shqair, I. Ghabar, A. Burqan, R. Saadeh, A solution for the neutron diffusion equation in the spherical and hemispherical reactors using the residual power series, Front. Phys., 11 (2023), 12 pages
-
[10]
T. Eriqat, A. El-Ajou, N. O. Moa’ath, Z. Al-Zhour, S. Momani, A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations, Chaos Solitons Fractals, 138 (2020), 11 pages
-
[11]
D. J. Evans, K. R. Raslan, The Adomian decomposition method for solving delay differential equation, Int. J. Comput. Math., 82 (2005), 49–54
-
[12]
M. Gul, H. Khan, A. Ali, The solution of fifth and sixth order linear and nonlinear boundary value problems by the Improved Residual Power Series Method, J. Math. Anal. Model., 3 (2022), 1–14
-
[13]
J.-H. He, Variational iteration method–a kind of non-linear analytical technique: some examples, Int. J. Non-Linear Mech., 34 (1999), 699–708
-
[14]
J. H. He, The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl. Math. Comp., 151 (2004), 287–292
-
[15]
C. H. He, Y. U. E. Shen, F. Y. Ji, J. H. He, Taylor series solution for fractal Bratu-type equation arising in electrospinning process, Fractals, 28 (2020),
-
[16]
J. H. He, L. Verma, B. Pandit, A. K. Verma, R. P. Agarwal, A new Taylor series based numerical method: Simple, reliable, and promising, J. Appl. Comput. Mech., 9 (2023), 1122–1134
-
[17]
E. Huntley, W. M. Pickering, A. S. I. Zinober, The numerical solution of linear time-dependent partial differential equations by the Laplace and fast Fourier transforms, J. Comput. Phys., 27 (1978), 256–271
-
[18]
E. A. Ibijola, B. J. Adegboyegun, O. Y. Halid, On Adomian Decomposition Method (ADM) for numerical solution of ordinary differential equations, Adv. in Nat. Appl. Sci., 2 (2008), 165–170
-
[19]
I. Jadlovská, T. Li, A note on the oscillation of third-order delay differential equations, Appl. Math. Lett., 167 (2025), 6 pages
-
[20]
S. A. Khuri, A Laplace decomposition algorithm applied to a class of nonlinear differential equations, J. Appl. Math., 1 (2001), 141–155
-
[21]
O. Kiymaz, An algorithm for solving initial value problems using Laplace Adomian decomposition method, Appl. Math. Sci. (Ruse), 3 (2009), 1453–1459
-
[22]
T. Li, D. Acosta-Soba, A. Columbu, G. Viglialoro, Dissipative gradient nonlinearities prevent δ-formations in local and nonlocal attraction-repulsion chemotaxis models, Stud. Appl. Math., 154 (2025), 19 pages
-
[23]
T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction–repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 21 pages
-
[24]
S. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147 (2004), 499–513
-
[25]
S. Liao, Homotopy analysis method in nonlinear differential equations, Springer, Shanghai (2012)
-
[26]
JP. C. Mbagwu, B. I. Madububa, J. I. Nwamba, Series solution of nonlinear ordinary differential equations using single Laplace transform method in mathematical physics, World Scientific News, 154 (2021), 152–174
-
[27]
R. K. Nagle, E. B. Saff, A. D. Snider, Fundamentals of differential equations and boundary value problems, Addison- Wesley, New York (1996)
-
[28]
R. K. Nagle, E. B. Saff, A. D. Snider, Fundamentals of Differential Equations and Boundary Value Problems, Pearson, New York (2018)
-
[29]
M. N. Oqielat, A. El-Ajou, Z. Al-Zhour, R. Alkhasawneh, H. Alrabaiah, Series solutions for nonlinear time-fractional Schrödinger equations: Comparisons between conformable and Caputo derivatives, Alex. Eng. J., 59 (2020), 2101–2114
-
[30]
M. N. Oqielat, T. Eriqat, O. Ogilat, A. El-Ajou, S. E. Alhazmi, S. Al-Omari, Laplace-residual power series method for solving time-fractional reaction-diffusion model, Fractal Fract., 7 (2023), 16 pages
-
[31]
M. Shqair, A. El-Ajou, M. Nairat, Analytical solution for multi-energy groups of neutron diffusion equations by a residual power series method, Mathematics, 7 (2019), 20 pages