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Abstract

This article offers analytical solutions in power series form for ordinary differential equations. It provides an effective tool
for deriving accurate analytical and numerical solutions to these equations via the use of a novel analytical approach called the
limit residual function method. The suggested technique demonstrates that an exact solution can be found when a pattern exists
in the obtained series solution; otherwise, only rough estimates can be provided. By comparing our results with exact solutions
to the problems we discussed, we conclude that the present approach is simple, easy, and effective for solving differential
equations, given that the consequent series approximate solutions are in the closed form of the actual results.
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1. Introduction

Ordinary and partial differential, integral, and integrodifferential equations are powerful tools for
understanding changes and dynamic processes in various natural and engineering phenomena [4, 19, 22,
23]. Among these equations, ordinary differential equations (ODEs) have a special place. The study of
ODEs has attracted the interest of many scientists over time because of its ability to model various systems
surrounding us. ODEs provide a mathematical framework for describing the behavior of these systems
and accurately predicting their future outcomes.

ODEs can be applied in various areas, including chemistry, where they model chemical reactions;
physics, where they describe the motion of objects and analyze electrical circuits; financial sciences; and
studies of population growth and environmental systems, among others.

It is important to mention some methods used to solve ODEs, including the predictor-corrector ap-
proach [7], the integral transformation method [17], the variational iteration approach [13], the Homo-
topy perturbation approach [2, 14], the Homotopy analysis method [24, 25], the Adomian decomposition
method [1, 11, 18], the Laplace Adomian decomposition method [20, 21], the Taylor series method [15, 16]
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and the power series (PS) method [8]. However, some challenges and problems have arisen in the solution
of nonhomogeneous ODEs, which led to the exploration of ways to address these issues, prompting the
proposal of the residual power series (RPS) method [31]. This method extends the PS method, employing
it to write the solution and using the derivatives to identify the coefficients of the series [9, 29].

The RPS method was developed by integrating the approach with the Laplace transform to solve
ODEs. This process involves transferring the target equation, using the RPS method to solve it in Laplace
space, then taking the inverse Laplace transform to obtain the desired results [6, 10, 30].

In this paper, a new method is introduced called the limit residual function (LRF) method [5] to solve
ODEs. This approach depends on the key ideas: the limit and the residual function. When comparing
the LRF technique to previous methods, we find that it reduces the time and effort required to obtain
solutions for ODEs. We will introduce the theoretical framework that underpins this method, along
with instructions on how to apply it to solve various ODEs. Moreover, we will provide a set of illustrative
examples that cover both linear and non-linear, as well as homogeneous and non-homogeneous equations.

2. Concepts and theorems about power series

Definition 2.1 ([3]). If t is a variable and ag, ai, a, ..., and ty are constants, then a series of the form
i .
Zaj(t—to)):ao—i-a] (t—to)—i—ﬂz(t—to)z—i-'”. (2.1)
j=0

is called a PS about t = t;.
All theories related to the convergence of PS (2.1) can be found in Reference [3].

Theorem 2.2 ([27]). The sum of PS (2.1) is zero for all t in some interval if and only if each coefficient a; is zero.

In the following, we present the key theorem of the proposed method, which assists in determining
the coefficients of the PW solutions.

Theorem 2.3 ([5]). Suppose w (t) = 0 for all t in some interval 1. If w (t) = Z;'X;o aj(t— to)j, then

y Wy (t)
m

=0, kkn=1,2,..., t#£tg,
t—tg (t—to)k_n # 0

where wy (t) = Z}(:O aj (t— to)’.

3. LRF methodology for solving ODEs

In this section, we present the LRF technique for solving ODEs. This method relies on finding the
limit as x approaches zero for the residual function formula. Consider the following general form of the
ODE of degree n:

d"w dw d*w " tw
—=Fltw,— t b 1
dtn < , D, dt 7 dt2 7 7 dtnil > 7 S [Cl, ]/ (3 )
subjected to the initial conditions
dtw .
I (ti) =, 1=0,1,2,...,n—1, (3.2)

where w(t) is an unknown analytical function that will be determined, and F is an analytic function.
LRF method assumes that the function w(t) can be written in the following PS expansion:

w(t)=) at—t),  lt—tl<p, (3.3)
j=0
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where the radius of convergence is p. Since the solution of problem (3.1)-(3.2) is a series solution, truncate
the series (3.3) to obtain the kth approximation:

wi(t) =Y aj(t—to).

M=
o

Based on the initial conditions in (3.2), we have

H2 Hn—1
aO:qu/ (11:}1_1, (12:5,..., anflzﬁ. (3.4)

Thus, the kth approximation of w(t) can be written as:

—_

n— k
Wy (t) = %(t—to)j +) ajt—to). (3.5)
= j!

Il
o

j=n
The additional coefficients are determined using the LRF technique by defining the residual functions as:

R (w (1)) :dnw—F<t,w

At dt2’ T din !

dw d%w d™ 1w
dtn '

So, the kth residual function can be written as:

d"wy dwy dzwk dn_lwk
Rk ((U (t)) — dtn —F < s Wk, dt s dtz ARy dtn_l

To find the k™ approximate solution for problem (3.1)-(3.2), we need to determine the coefficients in
equation (3.5), aj,wherej=n,n+1,...k, by using the main tool of the LRF method, which successfully
identifies the unknown coefficients and is given by

lim Rj (w (1))

——————=0, j=n,n+1,... k.
ot (t—to) T :

4. Mlustrative examples

This section tests the performance and application of the suggested method for solving ODEs. The
results obtained are compared with exact solutions, and various examples are presented to demonstrate
the ease and effectiveness of using LRF to find series solutions to ODEs.

Example 4.1. Consider the following homogeneous nonlinear ODEs:

d’w _
v (t) = w?(t) e, (4.1)
subjected to the following initial conditions:
w(0)=1, w (0)=1, v (0=1, 0@ 0)=1 0¥ (0) =1. (4.2)

The exact solution of problem (4.1)-(4.2) is w (t) = e* [12]. Considering the LRF technique to create a series
solution for problem (4.1)-(4.2), we begin by writing the solution on the following series expansions:

w(t) = Z ajtj. (4.3)
i=0
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So, we can get the k! approximate solution for problem (4.1)-(4.2) by truncating the series in (4.3) as
follows:

k
wy (1) = Z Cl]'t].
=0

Based on the construction specified in Equations (3.4) and (3.5), the k' approximation of w (t) is given by
1 1 1 <
_ 22 13 4 4
wy (t) 1+t+2t Tt j§_5a]t. (4.4)

More unknown coefficients of the series given in Equation (4.4) can be found by applying the second step
of the LRF approach by defining the residual function of equation (4.1) as follows:

d5(U 2 _
Rw(t)) = Tl (t) —w” (t)e
and the k" residual function as:
dw _
Ric (w (1) =~ (0 —wi (e,

To find the unknown coefficient as in (4.4), we substitute the 5% approximation,

_ 1 2 1 3 1 4 5
ws (1) = T+t+ 5t ot tast’,

5th

into the residual function

d5w5

e (t) — w% (t)e ",

Rs (w (1)) =
to get

_ 1o 153 1.4 5 ? —t
Rs (w (t)) = 120as5 (1+t+ 2t + 6t +24t +ast’ ) e .
Solving equation lim¢_,o R5 (w (t)) =0, for as, yields a5 = ﬁ. To find the value of the coefficient ag, we
prepare the 6" approximate solution wg(t) =ws(t)+aet®, then substitute it into the 6th residual function,
Re (w (t)), to get

1 1 1 1 2
R ) =1+720agt — [ 1+t+ 2+ 2+ —t*+ —+° t6) e t.
6(w()) + 720ag¢ < + —l—z +6 +24 +120 + ag e

Rslwlt)) — 0, for ag, then we get ag = %0' Similarly, substituting the 7

. . . . Re
Again, solving equation lim¢_,o =*
approximation, w7(t) =ws(t)+azt’, into Ry (w (t)) and then solving the equation lim_, W: Ofor

ay, we have ay = 501—40. Therefore, the 7" approximate solution of problem (4.1)-(4.2) is given by

wt)=1+t+ %tz + %9 + %t‘* + %tfs + $t6 + %t7, (4.5)
which is the first eight terms of the expansion of the exact solution w (t) = e* mentioned above [12].
Figure 1 shows the exact and 10" approximate solution of problem (4.1)-(4.2) in the interval [-8,8]. The
curves show a full agreement between the exact and the approximate solutions in a wide interval. To
evaluate the solution, some numerical data are compiled in Table 1 for the approximate solution given in
equation (4.5). Table 1 includes comparisons between the 10" approximate and the exact solutions over
the interval [-2, 2] along with the absolute and relative errors.



M. Abu Kharrob, A. Burgan, A. El-Ajou, J. Math. Computer Sci., 41 (2026), 195-206 199

w1o(t)

w(t)

A
A

Se

-8 -6 -4 -2 2 4 6 8

Figure 1: The curves of the exact (solid) and 10th approximate (dotted) solutions of problem (4.1)-(4.2)

Table 1: Numerical data of the solution of problem (4.1)-(4.2), including exact solution, 10th approximate solution, absolute error,
and relative error.

t w(t) wip(t) Abs. err. (t) Rel. err. (t)

—2.0 0.135335 0.135379 4.39055 x 10> 3.24420 x 10~*
—15 0.223130 0.223132 1.92429 x 10°°®  8.62407 x 10°
—1.0 0367879 0.367879 231143 x10°% 6.28311 x 1078
0.0 1.000000 1.000000 0 0

0.5 1.648720 1.648720 1.27625 x 1011 7.74082 x 10~ 12
1.0 2.718280 2.718280 2.73127 x 10~ %  1.00478 x 108
1.5 4481690 4.481690 2.47279x107°% 551753 x 10~
2.0 7.389060 7.388999 6.13899 x 107>  8.30822 x 10°

Example 4.2. Consider the following nonhomogeneous linear ODE:

d2
C0 (04252 (1) + 2 (1) = Ssint + Seost, (4.6)

subjected to the following initial conditions:
w0)=1, w (0)=2. 4.7)
We can find analytically that the exact solution is
w (t) =2e ‘cost + e~ sint + 3sint — cost.
Firstly, let us indicate the inhomogeneous term in equation (4.6) as follows:
h (t) = 5sint + 5cost.

Following the LRF technique, we assume that the solution of problem (4.6)-(4.7) has the following series
expansion:

w(t) = Z ajtj. (4.8)
i=0

On the other hand, we write the function h (t) in the following expansion:

00 L[ t
h(t) = SZO (-1) <(2j o (21')!>'

j
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So, we can get an approximate solution of problem (4.6)-(4.7) by truncating the series in (4.8) as follows:

k
wy (1) = Z ajt].
=0

Based on the initial conditions specified in equation (4.7), the k' truncated series of w (t) is given as:

k
Wi (t) =1+2t+ ) at). (4.9)
j=2

As mentioned in Section 3, to determine the unknown coefficients of the series in equation (4.9), define
the residual function of equation (4.6) and the k™ residual function as follows:

2
Rl () = S5 (0+257 (0 +20 (0 - (b),
2
R (@ (6) = S5 (0) +250 (1) + 20 (8) ~ hc (1),

where

3 g2 k ) $20+1 125
hi (t) =5(t+1)-5 <3,+) +5§(—1)1 ((2j+1)! + (2j)!>'

To find the unknown coefficient a; in (4.9), we substitute the 2"d approximation wy (t) =1+ 2t+ayt?, into
the 274 residual function R, (w (t)), to get

3 12 0 th
Ra (w (1)) =2az +2(2+2ast) +2 (1 + 2t + apt?) — <5(t+1)—5 <3'+2'> +5 (5'+4'>>.

Employing the result in Theorem 2.3, considering k= 1, we have the equation lim¢_,o R, (w (t)) = 0. Solv-
ing for a,, we get a = —1. In the same approach, to determine the value of the coefficient a;, we need to
replace the 3rd approximation ws(t) =ws(t)+ast? in the 3™ residual function, R (w (t)), to get

1
Rs (w (t)) = —1+6ast +2 (2—t +3ast?) +2 (1 + 2t — Et2+ a3t3>

5 , B2 ¢ 1
Sty ste) 7 Te) )

The algebraic equation lim¢_,g Rs(w(t))

t
w4 (t) = ws(t) + ast?, into W, gives the following result:

=0 gives a3 = 4. Similarly, substituting the 4™ approximation,

Ry(w(t))

3 1 1
2 = 12(14 +2 <2 + 4a4t> +2 <— +=t+ a4t2)

2 2

s[(t, 1 £ 2 t© t! t t°
et e Ta) T\ mte) e e
Solving the equation lim_,o w: 0 for ay gives the indicated coefficient ay = —%. This process can
be repeated multiple times to increase the order of the approximate solution. The required coefficients
are summarized in Table 2.
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Table 2: Other coefficients of the 10" approximation of w(t) for problem (4.6)-(4.7).

k ax k ax
7 31
5 1w 8w
1 13
6 80 9 —3msm
3 31
7 =50 10 —3m8s00

Therefore, the 10" approximate solution of problem (4.6)-(4.7) is given by

7

1

1, 1
wio(t) =142t — 24ty T Lo 37

2

2 8

120

31 ¢ 13 4 31

80 560

10320° 362880 3628800

which is the first eleven terms of the expansion of the exact solution [28]. Figure 2 shows the exact and
10t approximate solution of problem (4.6)-(4.7) in the interval [-4,4]. Figure 2 and the numerical data in
Table 3 confirm the high agreement between the exact and approximate solutions. The table includes the
exact solution, the 10 approximate solution, as well as the absolute error and the relative error of the

approximation.

Figure 2: The curves of the exact (solid) and 10th approximate (dotted) solutions of problem (4.6)-(4.7).

Table 3: Numerical data of the solution of problem (4.6)-(4.7), including exact solution, 10t approximate solution, absolute error,

and relative error.

t w(t) w1g(t) Abs. err. (t) Rel. err. (t)
—2.0 —15.1805 —15.1745 5.92715x 107> 3.90446 x 10~*
—15 —6.89964 —6.89940 237984 x 10°* 3.44922 x 10°
—1.0 —2.41468 —2.41468 2.60812x107® 1.08011 x 10~°
—0.5 —0.21252 —0.21252 1.20458 x 10~°  5.66809 x 10~

0.0  1.00000  1.00000 0 0

05 191604 191604 1.07327 x10~° 5.60147 x 10710
1.0 269120 2.69120 2.07250 x 10°®  7.70103 x 10~
1.5 317589  3.17572  1.68996 x 10~* 5.32121 x 107>
20 315446  3.15069 3.77261 x 1073 1.19596 x 103

Example 4.3. Consider the following nonhomogeneous nonlinear singular ODE:

d?w
dt2

(t) +

2dw
t dt

(t) —tsin (w (t)) = €%, t € (0,2), (4.10)
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subjected to the initial conditions:
w(0)=m,  (0)=0. (4.11)

Firstly, expand the inhomogeneous term in equation (4.10) as follows:

h(t) = e*t :Z@

=

Following the LRF approach to construct an analytical series solution for problem (4.10)-(4.11), we write
the solution as the following series expansions:

w(t) = i ajt). (4.12)
j=0

So, the kth approximate solution of problem (4.10)-(4.11) can be obtained by truncating the series in (4.12)
as:

k
wy (1) = Z Cljt].
=0

Based on the initial conditions specified in equation (4.11), the k' approximation of w (t) will be as
follows:

k
wi (t) =7+ a;t. (4.13)
j=2

To identify the additional coefficients of the series given in equation (4.13), we write the residual function
of equation (4.10) as:

d2w 2dw .
R(w (1) = L7 (0+ 50 (O —tsin(w (©) —h (1),
and the k" residual function as:
azwk 2 awk .
R (w(t)) W(t)‘i‘¥W(t)—tsm(wk(t))—hk(t)/
where .
2t))
hk(‘t) = Z (]')

j=0

Substitute the 2" approximation wj (t) =m+a,t?, into the 2™ residual function, R, (w (t)), we get
PP g
Ry (w(t)) = 6ay —tsin (m+ apt?) — 1 — 2t — 2%

Solving the equation lim;_,o Ry (w (t)) =0, for a, we obtain a, = %. To determine the value of the
coefficient a3, we need to find the 3™ approximation w3(t) = wy(t) + ast?, then substituting it into the
3" residual function, R3 (w (t)), we get

4

1
Rz (w(t)) = 12a3t — tsin <7’t+ gtz + C13t3> —2t—2t2 — §t3.

Solving the equation lim¢_,q R3(ut)(t)) =0, for a3, we get a3 = %. Similarly, to set the coefficient ay4, we
substitute wy (t) =w3 (t) +ast* in Ry (w (t)) to obtain

1 1 4, 2
Ry (w(t)) = 20aut? — tsin <7r+ th + 6t?’ + a4t4> —2t2 — gt3 — §t4.

Using the fact lim¢_, w: 0 supplies the coefficient as = . The process may be repeated several
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times to find an approximate solution. Table 4 outlines the necessary coefficients.

Table 4: Other coefficients of the 10! approximation of w(t) for problem (4.10)-(4.11).

k Ay k Ay
7 1

5 180 8 1440
1 647

6 84 9 4082400
1 43

7 336 10 831600

Therefore, the solution of problem (4.10)-(4.11) will be in the form

(t)—7r—i—1t2+1t3+it4+Lt5+it6+Lt7+ - t7 +
= 84 336 1440 ' 4082400 ' 831600

6 6

10

180

s 647

Figure 3 shows the 10" and 20 approximate LRf solutions to problem (4.10)-(4.11). Table 5 provides
numerical data for the two approximate solutions plotted in Figure 3, as well as the two types of errors:
consecutive and relative errors.

The consecutive and relative errors are defined, respectively, as follows:

Con. err(t) = |wyg(t) — wig(t)], Rel. err(t) = ‘

Figure 3: The 10! and 20* approximate LRF solution of w(t) of problem (4.10)-(4.11).

4

-

-t
L e

0.5

1.0 1.5 2.0

wyo(t) — wio(t)

woo(t)

Table 5: Numerical data of the solution of problem (4.10)-(4.11), including 10th, and 20th approximate solutions, consecutive

error, and relative error.

t wy(t)  wiglt) Con. err. (t) Rel. err. (t)

0.0 3.14159 3.14159 0 0

02 3.14977 3.14977 8.14016 x 10713 2.58437 x 10~ 12
04 3.18194 3.18194 2.02295x 107 6.35761 x 10~1°
0.6 3.25423 3.25423 217499 x 1077  6.68358 x 1078
0.8 3.39119 3.39118 6.56717 x 107®  1.93654 x 10~°
1.0 3.62970 3.62960 1.00053 x 107*  2.75651 x 107>
1.2 4.02505 4.02406 9.96985 x 10™*  2.47695 x 10~*
14 4.66238 4.65494 7.44276 x 1073  1.59634 x 1073
1.6 5.68510 5.64009 4.50077 x 1072  7.91679 x 1073

Example 4.4. Consider the following nonhomogeneous nonlinear ODE:

dw

dt

(1) — 1= w?(t),

(4.14)
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subjected to the initial condition:
w(0) =0. (4.15)

We can check that the exact solution is w(t) = tan(t). According to the LRF technique, we write the
solution in the following series expansion:

o0
w(t) =) atl.
j=0

So, the kth approximate solution of problem (4.14)-(4.15) can be considered as:

k
wk(t) = Z a]—t).
j=1

The k' residual function of equation (4.14) is as follows:

R (w(t) = 0%

(t) —1— w2 (t).
Substituting the 1% approximation wi(t) = ait into the 1% residual function, R; (w (t)), to get

Ry (w(t) = a3 —1— (art)?.

So, solving the equation lim¢_,o R; (w (t)) =0, for a;, gives a; = 1. The second coefficient a; is obtained
by substituting w,(t) = wq(t) + a,t? into the 2" residual function, R, (w (t)), as:

Ry (w(t) = 2a5t — (t+ art?)”,

The equation lim_, w = 0 yields that a, = 0. In the same way, set the 3" approximation, w;(t) =
wy(t) + ast?, into Rz (w (t)). The equation lim;_,¢ w =0 gives a3 = % Similarly, we can obtain

ag = 0. The process can be repeated multiple times to increase the order of the approximate solution. The
needed coefficients for the 10" approximation are summarized in Table 6.

Table 6: Other coefficients of the 10 approximation of w(t) for problem (4.14)-(4.15).

k(lk k ax
2

5 2 8 0

6 0 9 5
17

7 10 0

Therefore, the solution of problem (4.14)-(4.15) will be in the form:

1, 2.5 17, 62 4

w(t) —t+3t + 15‘( +315t +2835t +-y,

which is the expansion of the exact solution w (t) = tan(t) [26]. Figure 4 shows the exact and 10th
approximate solution in the interval [—1.5,1.5] of problem (4.14)-(4.15). The figure clearly illustrates
full agreement between the two solutions. In Table 7, we compare approximate and exact solutions
numerically. Table 7 presents the results of this comparison, including the absolute and relative errors
of the approximate solution. The results are obtained within the range of [—0.8,0.8], which indicates a
strong level of approximation.
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w(t)

w1o(t)

Figure 4: The curves of the exact (solid) and and 10th approximate (dotted) solutions of problem (4.14)-(4.15).

Table 7: Numerical data of the solution of problem (4.14)-(4.15), including 10th, and 20th approximate solutions, consecutive
error, and relative error.

t w (t) w1g(t) Abs. err. (t) Rel. err. (t)

—0.8 —1.029640 —1.028610 1.02799 x 10>  9.98396 x 10~ *
—0.6 —0.684137 —0.684099 3.76486 x 10>  5.50308 x 10>
—0.4 —0.422793 —0.422793 3.97529 x 10~/  9.40244 x 10~
—0.2 —0.202710 —0.202710 1.84510x 10~ 9.10218 x 10~1°
0.0 0 0 0 0

0.2 0202710 0202710 1.84510 x 10719 9.10218 x 10~ 10
0.4 0422793 0422793  3.97529 x 1077 9.40244 x 107
0.6 0.684137  0.684099 3.76486 x 10™°  5.50308 x 10>
0.8  1.029640  1.028610  1.02799 x 10>  9.98396 x 10*

5. Conclusion

The article aims to employ an efficient technique called the LRF method to get analytical series solu-
tions of linear and nonlinear ODEs. Utilizing a key property of the residual function, a straightforward
and effective algorithm is provided, which can be easily implemented using software packages such as
Mathematica. The main objective is to evaluate the effectiveness of this suggested method in finding
series solutions for challenging ODEs. For the general class of linear ODEs with analytic coefficients, this
method effectively provides exact PS solutions. Furthermore, the LRF method achieves high-accuracy ap-
proximations for nonlinear ODEs. Certainly, the new method can be used to solve other sets of equations
that were not investigated in earlier research, including partial differential equations, integral equations,
and integrodifferential equations. Furthermore, since the LRF method has not been applied to solve
differential equations with boundary conditions, all these topics will be investigated in the next research.
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