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Abstract

This article offers analytical solutions in power series form for ordinary differential equations. It provides an effective tool
for deriving accurate analytical and numerical solutions to these equations via the use of a novel analytical approach called the
limit residual function method. The suggested technique demonstrates that an exact solution can be found when a pattern exists
in the obtained series solution; otherwise, only rough estimates can be provided. By comparing our results with exact solutions
to the problems we discussed, we conclude that the present approach is simple, easy, and effective for solving differential
equations, given that the consequent series approximate solutions are in the closed form of the actual results.
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1. Introduction

Ordinary and partial differential, integral, and integrodifferential equations are powerful tools for
understanding changes and dynamic processes in various natural and engineering phenomena [4, 19, 22,
23]. Among these equations, ordinary differential equations (ODEs) have a special place. The study of
ODEs has attracted the interest of many scientists over time because of its ability to model various systems
surrounding us. ODEs provide a mathematical framework for describing the behavior of these systems
and accurately predicting their future outcomes.

ODEs can be applied in various areas, including chemistry, where they model chemical reactions;
physics, where they describe the motion of objects and analyze electrical circuits; financial sciences; and
studies of population growth and environmental systems, among others.

It is important to mention some methods used to solve ODEs, including the predictor-corrector ap-
proach [7], the integral transformation method [17], the variational iteration approach [13], the Homo-
topy perturbation approach [2, 14], the Homotopy analysis method [24, 25], the Adomian decomposition
method [1, 11, 18], the Laplace Adomian decomposition method [20, 21], the Taylor series method [15, 16]
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and the power series (PS) method [8]. However, some challenges and problems have arisen in the solution
of nonhomogeneous ODEs, which led to the exploration of ways to address these issues, prompting the
proposal of the residual power series (RPS) method [31]. This method extends the PS method, employing
it to write the solution and using the derivatives to identify the coefficients of the series [9, 29].

The RPS method was developed by integrating the approach with the Laplace transform to solve
ODEs. This process involves transferring the target equation, using the RPS method to solve it in Laplace
space, then taking the inverse Laplace transform to obtain the desired results [6, 10, 30].

In this paper, a new method is introduced called the limit residual function (LRF) method [5] to solve
ODEs. This approach depends on the key ideas: the limit and the residual function. When comparing
the LRF technique to previous methods, we find that it reduces the time and effort required to obtain
solutions for ODEs. We will introduce the theoretical framework that underpins this method, along
with instructions on how to apply it to solve various ODEs. Moreover, we will provide a set of illustrative
examples that cover both linear and non-linear, as well as homogeneous and non-homogeneous equations.

2. Concepts and theorems about power series

Definition 2.1 ([3]). If t is a variable and a0,a1,a2, . . . , and t0 are constants, then a series of the form

∞∑
j=0

aj(t− t0)
j = a0 + a1 (t− t0) + a2(t− t0)

2 + · · · . (2.1)

is called a PS about t = t0.
All theories related to the convergence of PS (2.1) can be found in Reference [3].

Theorem 2.2 ([27]). The sum of PS (2.1) is zero for all t in some interval if and only if each coefficient aj is zero.

In the following, we present the key theorem of the proposed method, which assists in determining
the coefficients of the PW solutions.

Theorem 2.3 ([5]). Suppose ω (t) = 0 for all t in some interval I. If ω (t) =
∑∞

j=0 aj(t− t0)
j, then

lim
t→t0

ωk(t)

(t− t0)
k−n

= 0, k,n = 1, 2, . . . , t ̸= t0,

where ωk (t) =
∑k

j=0 aj (t− t0)
j.

3. LRF methodology for solving ODEs

In this section, we present the LRF technique for solving ODEs. This method relies on finding the
limit as x approaches zero for the residual function formula. Consider the following general form of the
ODE of degree n:

dnω

dtn
= F

(
t,ω,

dω

dt
,
d2ω

dt2 , . . . ,
dn−1ω

dtn−1

)
, t ∈ [a,b] , (3.1)

subjected to the initial conditions

diω

dti
(ti) = µi, i = 0, 1, 2, . . . ,n− 1, (3.2)

where ω(t) is an unknown analytical function that will be determined, and F is an analytic function.
LRF method assumes that the function ω(t) can be written in the following PS expansion:

ω (t) =

∞∑
j=0

aj(t− t0)
j, |t− t0| < ρ, (3.3)
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where the radius of convergence is ρ. Since the solution of problem (3.1)-(3.2) is a series solution, truncate
the series (3.3) to obtain the kth approximation:

ωk(t) =

k∑
j=0

aj(t− t0)
j.

Based on the initial conditions in (3.2), we have

a0 = µ0, a1 = µ1, a2 =
µ2

2!
, . . . , an−1 =

µn−1

(n− 1)!
. (3.4)

Thus, the kth approximation of ω(t) can be written as:

ωk (t) =

n−1∑
j=0

µj

j!
(t− t0)

j +

k∑
j=n

aj(t− t0)
j. (3.5)

The additional coefficients are determined using the LRF technique by defining the residual functions as:

R (ω (t)) =
dnω

dtn
− F

(
t,ω,

dω

dt
,
d2ω

dt2 , . . . ,
dn−1ω

dtn−1

)
.

So, the kth residual function can be written as:

Rk (ω (t)) =
dnωk

dtn
− F

(
t,ωk,

dωk

dt
,
d2ωk

dt2 , . . . ,
dn−1ωk

dtn−1

)
.

To find the kth approximate solution for problem (3.1)-(3.2), we need to determine the coefficients in
equation (3.5), aj,wherej=n,n+1, . . . ,k, by using the main tool of the LRF method, which successfully
identifies the unknown coefficients and is given by

lim
t→t0

Rj (ω (t))

(t− t0)
j−n

= 0, j = n,n+ 1, . . . ,k.

4. Illustrative examples

This section tests the performance and application of the suggested method for solving ODEs. The
results obtained are compared with exact solutions, and various examples are presented to demonstrate
the ease and effectiveness of using LRF to find series solutions to ODEs.

Example 4.1. Consider the following homogeneous nonlinear ODEs:

d5ω

dt5 (t) = ω2 (t) e−t, (4.1)

subjected to the following initial conditions:

ω (0)= 1, ω
′
(0)= 1, ω

′′
(0) = 1, ω(3) (0) = 1, ω(4) (0) = 1. (4.2)

The exact solution of problem (4.1)-(4.2) is ω (t) = et [12]. Considering the LRF technique to create a series
solution for problem (4.1)-(4.2), we begin by writing the solution on the following series expansions:

ω (t) =

∞∑
j=0

ajt
j. (4.3)
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So, we can get the kth approximate solution for problem (4.1)-(4.2) by truncating the series in (4.3) as
follows:

ωk (t) =

k∑
j=0

ajt
j.

Based on the construction specified in Equations (3.4) and (3.5), the kth approximation of ω (t) is given by

ωk (t) = 1 + t+
1
2
t2 +

1
6
t3 +

1
24

t4 +

k∑
j=5

ajt
j. (4.4)

More unknown coefficients of the series given in Equation (4.4) can be found by applying the second step
of the LRF approach by defining the residual function of equation (4.1) as follows:

R (ω (t)) =
d5ω

dt5 (t) −ω2 (t) e−t,

and the kth residual function as:

Rk (ω (t)) =
d5ωk

dt5 (t) −ω2
k (t) e

−t.

To find the unknown coefficient a5 in (4.4), we substitute the 5th approximation,

ω5 (t)= 1+t+
1
2
t2+

1
6
t3+

1
24

t4+a5t
5,

into the 5th residual function

R5 (ω (t)) =
d5ω5

dt5 (t) −ω2
5 (t) e

−t,

to get

R5 (ω (t)) = 120a5 −

(
1 + t+

1
2
t2 +

1
6
t3 +

1
24

t4 + a5t
5
)2

e−t.

Solving equation limt→0 R5 (ω (t))= 0, for a5, yields a5 = 1
120 . To find the value of the coefficient a6, we

prepare the 6th approximate solution ω6(t) =ω5(t)+a6t
6, then substitute it into the 6th residual function,

R6 (ω (t)), to get

R6 (ω (t)) = 1 + 720a6t−

(
1 + t+

1
2
t2 +

1
6
t3 +

1
24

t4 +
1

120
t5 + a6t

6
)2

e−t.

Again, solving equation limt→0
R6(ω(t))

t = 0, for a6, then we get a6 = 1
720 . Similarly, substituting the 7th

approximation, ω7(t) =ω6(t)+a7t
7, into R7 (ω (t)) and then solving the equation limt→0

R4(ω(t))
t2 = 0for

a7, we have a7 = 1
5040 . Therefore, the 7th approximate solution of problem (4.1)-(4.2) is given by

ω (t) = 1 + t+
1
2!
t2 +

1
3!
t3 +

1
4!
t4 +

1
5!
t5 +

1
6!
t6 +

1
7!
t7, (4.5)

which is the first eight terms of the expansion of the exact solution ω (t) = et mentioned above [12].
Figure 1 shows the exact and 10th approximate solution of problem (4.1)-(4.2) in the interval [−8, 8]. The
curves show a full agreement between the exact and the approximate solutions in a wide interval. To
evaluate the solution, some numerical data are compiled in Table 1 for the approximate solution given in
equation (4.5). Table 1 includes comparisons between the 10th approximate and the exact solutions over
the interval [−2, 2] along with the absolute and relative errors.
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Figure 1: The curves of the exact (solid) and 10th approximate (dotted) solutions of problem (4.1)-(4.2)

Table 1: Numerical data of the solution of problem (4.1)-(4.2), including exact solution, 10th approximate solution, absolute error,
and relative error.

t ω(t) ω10(t) Abs. err. (t) Rel. err. (t)

−2.0 0.135335 0.135379 4.39055 × 10−5 3.24420 × 10−4

−1.5 0.223130 0.223132 1.92429 × 10−6 8.62407 × 10−6

−1.0 0.367879 0.367879 2.31143 × 10−8 6.28311 × 10−8

0.0 1.000000 1.000000 0 0
0.5 1.648720 1.648720 1.27625 × 10−11 7.74082 × 10−12

1.0 2.718280 2.718280 2.73127 × 10−8 1.00478 × 10−8

1.5 4.481690 4.481690 2.47279×10−6 5.51753 × 10−7

2.0 7.389060 7.388999 6.13899 × 10−5 8.30822 × 10−6

Example 4.2. Consider the following nonhomogeneous linear ODE:

d2ω

dt2 (t) + 2
dω

dt
(t) + 2ω (t) = 5sint+ 5cost, (4.6)

subjected to the following initial conditions:

ω (0)= 1, ω
′
(0)= 2. (4.7)

We can find analytically that the exact solution is

ω (t) = 2e−tcost+ e−tsint+ 3sint− cost.

Firstly, let us indicate the inhomogeneous term in equation (4.6) as follows:

h (t) = 5sint+ 5cost.

Following the LRF technique, we assume that the solution of problem (4.6)-(4.7) has the following series
expansion:

ω (t) =

∞∑
j=0

ajt
j. (4.8)

On the other hand, we write the function h (t) in the following expansion:

h (t) = 5
∞∑
j=0

(−1)j
(

t2j+1

(2j+ 1)!
+

t2j

(2j)!

)
.
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So, we can get an approximate solution of problem (4.6)-(4.7) by truncating the series in (4.8) as follows:

ωk (t) =

k∑
j=0

ajt
j.

Based on the initial conditions specified in equation (4.7), the kth truncated series of ω (t) is given as:

ωk (t) = 1 + 2t+
k∑

j=2

ajt
j. (4.9)

As mentioned in Section 3, to determine the unknown coefficients of the series in equation (4.9), define
the residual function of equation (4.6) and the kth residual function as follows:

R (ω (t)) =
d2ω

dt2 (t) + 2
dω

dt
(t) + 2ω (t) − h (t) ,

Rk (ω (t)) =
d2ωk

dt2 (t) + 2
dωk

dt
(t) + 2ωk (t) − hk (t) ,

where

hk (t) = 5 (t+ 1) − 5
(
t3

3!
+

t2

2!

)
+ 5

k∑
j=2

(−1)j
(

t2j+1

(2j+ 1)!
+

t2j

(2j)!

)
.

To find the unknown coefficient a2 in (4.9), we substitute the 2nd approximation ω2 (t)= 1 + 2t+a2t
2, into

the 2nd residual function R2 (ω (t)), to get

R2 (ω (t)) = 2a2 + 2 (2 + 2a2t) + 2
(
1 + 2t+ a2t

2) −

(
5 (t+ 1) − 5

(
t3

3!
+

t2

2!

)
+ 5

(
t5

5!
+

t4

4!

))
.

Employing the result in Theorem 2.3, considering k= 1, we have the equation limt→0 R2 (ω (t))= 0. Solv-
ing for a2, we get a2 = −1

2 . In the same approach, to determine the value of the coefficient a3, we need to
replace the 3rd approximation ω3(t) =ω2(t)+a3t

3 in the 3rd residual function, R3 (ω (t)), to get

R3 (ω (t)) = −1 + 6a3t+ 2
(
2 − t+ 3a3t

2)+ 2
(

1 + 2t−
1
2
t2 + a3t

3
)

− 5
[
(t+ 1) −

(
t3

3!
+

t2

2!

)
+

(
t5

5!
+

t4

4!

)
−

(
t7

7!
+

t6

6!

)]
.

The algebraic equation limt→0
R3(ω(t))

t = 0 gives a3 = 1
2 . Similarly, substituting the 4th approximation,

ω4(t) = ω3(t) + a4t
4, into R4(ω(t))

t2 , gives the following result:

R4(ω(t))

t2 = 12a4 + 2
(

3
2
+ 4a4t

)
+ 2

(
−

1
2
+

1
2
t+ a4t

2
)

+ 5
[(

t

3!
+

1
2!

)
−

(
t3

5!
+

t2

4!

)
+

(
t5

7!
+

t4

6!

)
−

(
t7

9!
+

t6

8!

)]
.

Solving the equation limt→0
R4(ω(t))

t2 = 0 for a4 gives the indicated coefficient a4 = −3
8 . This process can

be repeated multiple times to increase the order of the approximate solution. The required coefficients
are summarized in Table 2.
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Table 2: Other coefficients of the 10th approximation of ω(t) for problem (4.6)-(4.7).

k ak k ak

5 7
120 8 31

40320

6 1
80 9 − 13

362880

7 − 3
560 10 − 31

3628800

Therefore, the 10th approximate solution of problem (4.6)-(4.7) is given by

ω10(t) = 1 + 2t−
1
2
t2 +

1
2
t3 −

3
8
t4 +

7
120

t5 +
1
80

t6 −
3

560
t7 +

31
40320

t8 −
13

362880
t9 −

31
3628800

t10,

which is the first eleven terms of the expansion of the exact solution [28]. Figure 2 shows the exact and
10th approximate solution of problem (4.6)-(4.7) in the interval [-4,4]. Figure 2 and the numerical data in
Table 3 confirm the high agreement between the exact and approximate solutions. The table includes the
exact solution, the 10th approximate solution, as well as the absolute error and the relative error of the
approximation.

Figure 2: The curves of the exact (solid) and 10th approximate (dotted) solutions of problem (4.6)-(4.7).

Table 3: Numerical data of the solution of problem (4.6)-(4.7), including exact solution, 10th approximate solution, absolute error,
and relative error.

t ω(t) ω10(t) Abs. err. (t) Rel. err. (t)

−2.0 −15.1805 −15.1745 5.92715 × 10−3 3.90446 × 10−4

−1.5 −6.89964 −6.89940 2.37984 × 10−4 3.44922 × 10−5

−1.0 −2.41468 −2.41468 2.60812 × 10−6 1.08011 × 10−6

−0.5 −0.21252 −0.21252 1.20458 × 10−9 5.66809 × 10−9

0.0 1.00000 1.00000 0 0
0.5 1.91604 1.91604 1.07327 × 10−9 5.60147 × 10−10

1.0 2.69120 2.69120 2.07250 × 10−6 7.70103 × 10−7

1.5 3.17589 3.17572 1.68996 × 10−4 5.32121 × 10−5

2.0 3.15446 3.15069 3.77261 × 10−3 1.19596 × 10−3

Example 4.3. Consider the following nonhomogeneous nonlinear singular ODE:

d2ω

dt2 (t) +
2
t

dω

dt
(t) − tsin (ω (t)) = e2t, t ∈ (0, 2) , (4.10)
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subjected to the initial conditions:
ω (0)=π, ω

′
(0)= 0. (4.11)

Firstly, expand the inhomogeneous term in equation (4.10) as follows:

h (t) = e2t =

∞∑
j=0

(2t)j

j!
.

Following the LRF approach to construct an analytical series solution for problem (4.10)-(4.11), we write
the solution as the following series expansions:

ω (t) =

∞∑
j=0

ajt
j. (4.12)

So, the kth approximate solution of problem (4.10)-(4.11) can be obtained by truncating the series in (4.12)
as:

ωk (t) =

k∑
j=0

ajt
j.

Based on the initial conditions specified in equation (4.11), the kth approximation of ω (t) will be as
follows:

ωk (t) = π+

k∑
j=2

ajt
j. (4.13)

To identify the additional coefficients of the series given in equation (4.13), we write the residual function
of equation (4.10) as:

R (ω (t)) =
d2ω

dt2 (t) +
2
t

dω

dt
(t) − tsin (ω (t)) − h (t) ,

and the kth residual function as:

Rk (ω(t)) =
∂2ωk

∂t2 (t) +
2
t

∂ωk

∂t
(t) − t sin (ωk(t)) − hk(t),

where

hk(t) =

k∑
j=0

(2t)j

j!
.

Substitute the 2nd approximation ω2 (t)=π+a2t
2, into the 2nd residual function, R2 (ω (t)), we get

R2 (ω(t)) = 6a2 − t sin
(
π+ a2t

2)− 1 − 2t− 2t2.

Solving the equation limt→0 R2 (ω (t)) = 0, for a2, we obtain a2 = 1
6 . To determine the value of the

coefficient a3, we need to find the 3rd approximation ω3(t) = ω2(t) + a3t
3, then substituting it into the

3rd residual function, R3 (ω (t)), we get

R3 (ω(t)) = 12a3t− t sin
(
π+

1
6
t2 + a3t

3
)
− 2t− 2t2 −

4
3
t3.

Solving the equation limt→0
R3(ω(t))

t = 0, for a3, we get a3 = 1
6 . Similarly, to set the coefficient a4, we

substitute ω4 (t)=ω3 (t)+a4t
4 in R4 (ω (t)) to obtain

R4 (ω(t)) = 20a4t
2 − t sin

(
π+

1
6
t2 +

1
6
t3 + a4t

4
)
− 2t2 −

4
3
t3 −

2
3
t4.

Using the fact limt→0
R4(ω(t))

t2 = 0 supplies the coefficient a4 = 1
10 . The process may be repeated several
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times to find an approximate solution. Table 4 outlines the necessary coefficients.

Table 4: Other coefficients of the 10th approximation of ω(t) for problem (4.10)-(4.11).

k ak k ak

5 7
180 8 1

1440

6 1
84 9 647

4082400

7 1
336 10 43

831600

Therefore, the solution of problem (4.10)-(4.11) will be in the form

ω (t) = π+
1
6
t2 +

1
6
t3 +

1
10

t4 +
7

180
t5 +

1
84

t6 +
1

336
t7 +

1
1440

t8 +
647

4082400
t9 +

43
831600

t10 + · · · .

Figure 3 shows the 10th and 20th approximate LRf solutions to problem (4.10)-(4.11). Table 5 provides
numerical data for the two approximate solutions plotted in Figure 3, as well as the two types of errors:
consecutive and relative errors.

The consecutive and relative errors are defined, respectively, as follows:

Con. err(t) = |ω20(t) −ω10(t)| , Rel. err(t) =
∣∣∣∣ω20(t) −ω10(t)

ω20(t)

∣∣∣∣ .

Figure 3: The 10th and 20th approximate LRF solution of ω(t) of problem (4.10)-(4.11).

Table 5: Numerical data of the solution of problem (4.10)-(4.11), including 10th, and 20th approximate solutions, consecutive
error, and relative error.

t ω20 (t) ω10(t) Con. err. (t) Rel. err. (t)

0.0 3.14159 3.14159 0 0
0.2 3.14977 3.14977 8.14016 × 10−13 2.58437 × 10−13

0.4 3.18194 3.18194 2.02295 × 10−9 6.35761 × 10−10

0.6 3.25423 3.25423 2.17499 × 10−7 6.68358 × 10−8

0.8 3.39119 3.39118 6.56717 × 10−6 1.93654 × 10−6

1.0 3.62970 3.62960 1.00053 × 10−4 2.75651 × 10−5

1.2 4.02505 4.02406 9.96985 × 10−4 2.47695 × 10−4

1.4 4.66238 4.65494 7.44276 × 10−3 1.59634 × 10−3

1.6 5.68510 5.64009 4.50077 × 10−2 7.91679 × 10−3

Example 4.4. Consider the following nonhomogeneous nonlinear ODE:

dω

dt
(t) − 1 = ω2(t), (4.14)
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subjected to the initial condition:
ω(0) = 0. (4.15)

We can check that the exact solution is ω(t) = tan(t). According to the LRF technique, we write the
solution in the following series expansion:

ω(t) =

∞∑
j=0

ajt
j.

So, the kth approximate solution of problem (4.14)-(4.15) can be considered as:

ωk(t) =

k∑
j=1

ajt
j.

The kth residual function of equation (4.14) is as follows:

Rk (ω(t)) =
dωk

dt
(t) − 1 −ω2

k(t).

Substituting the 1st approximation ω1(t) = a1t into the 1st residual function, R1 (ω (t)), to get

R1 (ω(t)) = a1 − 1 − (a1t)
2 .

So, solving the equation limt→0 R1 (ω (t)) = 0, for a1, gives a1 = 1. The second coefficient a2 is obtained
by substituting ω2(t) = ω1(t) + a2t

2 into the 2nd residual function, R2 (ω (t)), as:

R2 (ω(t)) = 2a2t−
(
t+ a2t

2)2
.

The equation limt→0
R2(ω(t))

t = 0 yields that a2 = 0. In the same way, set the 3rd approximation, ω3(t) =

ω2(t) + a3t
3, into R3 (ω (t)) . The equation limt→0

R3(ω(t))
t2 = 0 gives a3 = 1

3 . Similarly, we can obtain
a4 = 0. The process can be repeated multiple times to increase the order of the approximate solution. The
needed coefficients for the 10th approximation are summarized in Table 6.

Table 6: Other coefficients of the 10th approximation of ω(t) for problem (4.14)-(4.15).

k ak k ak

5 2
15 8 0

6 0 9 62
2835

7 17
315 10 0

Therefore, the solution of problem (4.14)-(4.15) will be in the form:

ω(t) = t+
1
3
t3 +

2
15

t5 +
17

315
t7 +

62
2835

t9 + · · · ,

which is the expansion of the exact solution ω (t) = tan (t) [26]. Figure 4 shows the exact and 10th

approximate solution in the interval [−1.5, 1.5] of problem (4.14)-(4.15). The figure clearly illustrates
full agreement between the two solutions. In Table 7, we compare approximate and exact solutions
numerically. Table 7 presents the results of this comparison, including the absolute and relative errors
of the approximate solution. The results are obtained within the range of [−0.8, 0.8], which indicates a
strong level of approximation.
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Figure 4: The curves of the exact (solid) and and 10th approximate (dotted) solutions of problem (4.14)-(4.15).

Table 7: Numerical data of the solution of problem (4.14)-(4.15), including 10th, and 20th approximate solutions, consecutive
error, and relative error.

t ω (t) ω10(t) Abs. err. (t) Rel. err. (t)

−0.8 −1.029640 −1.028610 1.02799 × 10−3 9.98396 × 10−4

−0.6 −0.684137 −0.684099 3.76486 × 10−5 5.50308 × 10−5

−0.4 −0.422793 −0.422793 3.97529 × 10−7 9.40244 × 10−7

−0.2 −0.202710 −0.202710 1.84510 × 10−10 9.10218 × 10−10

0.0 0 0 0 0
0.2 0.202710 0.202710 1.84510 × 10−10 9.10218 × 10−10

0.4 0.422793 0.422793 3.97529 × 10−7 9.40244 × 10−7

0.6 0.684137 0.684099 3.76486 × 10−5 5.50308 × 10−5

0.8 1.029640 1.028610 1.02799 × 10−3 9.98396 × 10−4

5. Conclusion

The article aims to employ an efficient technique called the LRF method to get analytical series solu-
tions of linear and nonlinear ODEs. Utilizing a key property of the residual function, a straightforward
and effective algorithm is provided, which can be easily implemented using software packages such as
Mathematica. The main objective is to evaluate the effectiveness of this suggested method in finding
series solutions for challenging ODEs. For the general class of linear ODEs with analytic coefficients, this
method effectively provides exact PS solutions. Furthermore, the LRF method achieves high-accuracy ap-
proximations for nonlinear ODEs. Certainly, the new method can be used to solve other sets of equations
that were not investigated in earlier research, including partial differential equations, integral equations,
and integrodifferential equations. Furthermore, since the LRF method has not been applied to solve
differential equations with boundary conditions, all these topics will be investigated in the next research.
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