Novel analytical solutions to the \((3+1)\)-dimensional heat model using Lie symmetry method
Authors
U. Usman
- Department of Mathematics and Statistics, The University of Lahore, Lahore 54590, Pakistan.
- College of Electrical and Mechanical Engineering (CEME), National University of Sciences and Technology (NUST), H-12 Islamabad 44000, Pakistan.
A. Hussain
- Department of Mathematics and Statistics, The University of Lahore, Lahore 54590, Pakistan.
A. M. Zidan
- Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi Arabia.
J. Herrera
- Facultad de Ciencias Naturales e Ingenieria, Universidad de Bogota Jorge Tadeo Lozano, Bogota 110311, Colombia.
Abstract
This study focuses on applying the Lie symmetry method, to obtain exact solutions in multiple forms for the \((3+1)\)-dimensional (3D) heat model This equation is a well-known model frequently used to describe numerous complex physical phenomena. Initially, the geometric vector fields for the 3D heat-type equation are determined. Using Lie symmetry reduction, we report a wide array of exact analytical solutions that encompass trigonometric and hyperbolic solitons, Lambert functions, polynomials, exponential and inverse functions, hypergeometric forms, Bessel functions, logarithmic forms, rational forms, and solitary wave solutions. These solutions include many rational forms that uncover intricate physical structures that have not been previously reported. The solutions presented in this study are original and significantly distinct from previous findings. They have significant potential for application in diverse fields, including fiber optics, plasma physics, soliton dynamics, fluid dynamics, mathematical physics, and other applied sciences. The findings demonstrated that these mathematical techniques are efficient, straightforward, and robust, making them suitable for solving other types of nonlinear equations.
Share and Cite
ISRP Style
U. Usman, A. Hussain, A. M. Zidan, J. Herrera, Novel analytical solutions to the \((3+1)\)-dimensional heat model using Lie symmetry method, Journal of Mathematics and Computer Science, 41 (2026), no. 2, 132--149
AMA Style
Usman U., Hussain A., Zidan A. M., Herrera J., Novel analytical solutions to the \((3+1)\)-dimensional heat model using Lie symmetry method. J Math Comput SCI-JM. (2026); 41(2):132--149
Chicago/Turabian Style
Usman, U., Hussain, A., Zidan, A. M., Herrera, J.. "Novel analytical solutions to the \((3+1)\)-dimensional heat model using Lie symmetry method." Journal of Mathematics and Computer Science, 41, no. 2 (2026): 132--149
Keywords
- Heat-type equation
- Lie symmetry method
- invariant solutions
- geometric vector fields
- Lie algebra
- conservation laws
MSC
References
-
[1]
S. C. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation law classifications, Eur. J. Appl. Math., 13 (2002), 545–566
-
[2]
S. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations Part II: General treatment, Eur. J. Appl. Math., 13 (2002), 567-585
-
[3]
G. I. Barenblatt, V. M. Yentov, V. M. Ryzhik, The theory of the unsteady filtration of liquid and gas, NASA STI/Recon Technical Report N, 78 (1977), 1–146
-
[4]
S. Chu, M. Lin, D. Li, R. Lin, S. Xiao, Adaptive reward shaping based reinforcement learning for docking control of autonomous underwater vehicles, Ocean Eng., 318 (2025),
-
[5]
F. Daman, H. Jafari, N. Kadkhoda, Lie symmetry method for obtaining exact solutions of nonlinear K(m, n) type equations, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 50 (2024), 307–317
-
[6]
C. Feng, Z. Feng, R. Mao, G. Li, Y. Zhong, K. Ling, Prediction of vitrinite reflectance of shale oil reservoirs using nuclear magnetic resonance and conventional log data, Fuel, 339 (2023),
-
[7]
B. Ghanbari, M. Inc, L. Rada, Solitary wave solutions to the Tzitzéica type equations obtained by a new efficient approach, J. Appl. Anal. Comput., 9 (2019), 568–589
-
[8]
B. Ghanbari, K. Nisar, M. Aldhaifallah, Abundant solitary wave solutions to an extended nonlinear Schrödinger’s equation with conformable derivative using an efficient integration method, Adv. Differ. Equ., 2020 (2020), 25 pages
-
[9]
Y. Guo, P. Wang, W. Gui, C. Yang, Set stability and set stabilization of Boolean control networks based on invariant subsets, Automatica J. IFAC, 61 (2015), 106–112
-
[10]
Y. He, E. Zio, Z. Yang, Q. Xiang, L. Fan, Q. He, S. Peng, Z. Zhang, H. Su, J. Zhang, A systematic resilience assessment framework for multi-state systems based on physics-informed neural network, Reliab. Eng. Syst. Saf., 275 (2025),
-
[11]
R. Hirota, Exact solution of Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971),
-
[12]
T. Hou, X. Liu, Z. Li, Y. Wang, T. Chen, B. Huang, Numerical investigation of cavitation induced noise and noise reduction mechanism for the leading-edge protuberances, Appl. Ocean Res., 154 (2025), 16 pages
-
[13]
N. H. Ibragimov, A. V. Aksenov, V. A. Baikov, V. A. Chugunov, R. K. Gazizov, A. G. Meshkov, CRC handbook of Lie group analysis of differential equations. Vol. 2, CRC Press, Boca Raton, FL (1995)
-
[14]
H. Jafari, N. Kadkhoda, D. Baleanu, Fractional Lie group method of the time-fractional Boussinesq equation, Nonlinear Dynam., 81 (2015), 1569–1574
-
[15]
H. Jafari, N. Kadkhoda, C. M. Khalique, Exact solutions of ϕ4 equation using Lie symmetry approach along with the simplest equation and exp-function methods, Abstr. Appl. Anal., 2012 (2012), 7 pages
-
[16]
H. Jafari, N. Kadkhoda, C. M. Khalique, Application of Lie symmetry analysis and simplest equation method for finding exact solutions of Boussinesq equations, Math. Probl. Eng., 2013 (2013), 4 pages
-
[17]
A. L. Kazakov, P. A. Kuznetsov, On one boundary value problem for a nonlinear heat equation in the case of two space variables, J. Appl. Ind. Math., 8 (2014), 227–235
-
[18]
A. L. Kazakov, A. A. Lempert, On the existence and uniqueness of the solution of a boundary value problem for a parabolic equation of unsteady filtration, Prikl. Mekh. Tekhn. Fiz., 54 (2013), 97–105
-
[19]
A. L. Kazakov, L. F. Spevak, Numerical and analytical studies of a nonlinear parabolic equation with boundary conditions of a special form, Appl. Math. Model., 37 (2013), 6918–6928
-
[20]
A. Kolmogorov, Selected works. I. Mathematics and mechanics, Springer, Dordrecht (2019)
-
[21]
W. Li, Q. Chen, G. Gu, X. Sui, Object matching of visible–infrared image based on attention mechanism and feature fusion, Pattern Recognit., 158 (2025),
-
[22]
J. Li, T. Xu, X. H. Meng, Y. X. Zhang, H. Q. Zhang, B. Tian, Lax pair, Bäcklund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation, J. Math. Anal. Appl., 336 (2007), 1443–1455
-
[23]
J.-G. Liu, Lump-type solutions and interaction solutions for the (2 + 1)-dimensional generalized fifth-order KdV equation, Appl. Math. Lett., 86 (2018), 36–41
-
[24]
Y. Liu, L. Jiang, Q. Qi, K. Xie, S. Xie, Online computation offloading for collaborative space/aerial-aided edge computing toward 6G system, IEEE Trans. Veh. Technol., 73 (2024), 2495–2505
-
[25]
Z. Lv, Q. Zhao, S. Li, Y. Wu, Finite-time control design for a quadrotor transporting a slung load, Control Eng. Pract., 122 (2022),
-
[26]
Z.-Y. Ma, G.-S. Hua, C.-L. Zheng, Multisoliton excitations for the Kadomtsev-Petviashvili equation, Z. für Naturforsch. A, 61 (2006), 32–38
-
[27]
S. O. Mbusi, B. Muatjetjeja, A. R. Adem, Lie group classification of a generalized coupled Lane-Emden-Klein-Gordon-Fock system with central symmetry, Nonlinear Dyn. Syst. Theory, 19 (2019), 186–192
-
[28]
B. Muatjetjeja, Group classification and conservation laws of the generalized Klein-Gordon-Fock equation, Int. J. Modern Phys. B, 30 (2016), 11 pages
-
[29]
P. J. Olver, Applications of Lie groups to differential equations, Springer-Verlag, New York (1993)
-
[30]
M. F. Seele, B. Muatjetjeja, T. G. Motsumi, A. R. Adem, Invariance analysis and conservation laws of a modified (2+1)- dimensional Ablowitz-Kaup-Newell-Segur water wave dynamical equation, J. Appl. Nonlinear Dyn., 14 (2025), 53–65
-
[31]
X. Shi, Y. Zhang, M. Yu, L. Zhang, Deep learning for enhanced risk management: a novel approach to analyzing financial reports, PeerJ Comput. Sci., 11 (2025), 39 pages
-
[32]
X. Sui, Q. Chen, G. Gu, Nonuniformity correction of infrared images based on infrared radiation and working time of thermal imager, Optik, 124 (2013), 352–356
-
[33]
X. Sui, Q. Wu, J. Liu, Q. Chen, G. Gu, A review of optical neural networks, IEEE Access., 8 (2020), 70773–70783
-
[34]
A. Tikhonov, A. Samarsky, Equations of Mathematical Physics, Dover Publications, Inc., New York (1990)
-
[35]
N. Vaganova, Constructing new classes of solutions of a nonlinear filtration equation by special consistent series, Proc. Steklov Inst. Math., 9 (2003), S182–S193
-
[36]
J. L. Vázquez, The porous medium equation: mathematical theory, Oxford University Press, New York (2007)
-
[37]
Y. Wu, T. Shen, A finite convergence criterion for the discounted optimal control of stochastic logical networks, IEEE Trans. Automat. Control, 63 (2018), 262–268
-
[38]
Y. Xiao, Y. Yang, D. Ye, J. Zhang, Quantitative precision second-order temporal transformation based pose control for spacecraft proximity operations, IEEE Trans. Aerosp. Electron. Syst., 61 (2025), 1931–1941
-
[39]
D. Yaro, A. R. Seadawy, D. Lu, W. O. Apeanti, S. W. Akuamoah, Dispersive wave solutions of the nonlinear fractional Zakhorov-Kuznetsov-Benjamin-Bona-Mahony equation and fractional symmetric regularized long-wave equation, Results Phys., 12 (2019), 1971–1979
-
[40]
Y. B. Zeldovich, A. S. Kompaneets, On the theory of propagation of heat with the heat conductivity depending upon the temperature, Akad. Nauk SSSR, Moscow, (1950), 61–71
-
[41]
T. Zhang, S. Xu, W. Zhang, New approach to feedback stabilization of linear discrete time-varying stochastic systems, IEEE Trans. Automat. Control, 70 (2025), 2004–2011
-
[42]
Z. Zhao, Y. Chen, B. Han, Lump soliton, mixed lump stripe and periodic lump solutions of a (2 + 1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation, Modern Phys. Lett. B, 31 (2017), 12 pages
-
[43]
L. Zheng, Y. Zhu, Y. Zhou, Meta-transfer learning-based method for multi-fault analysis and assessment in power system, Appl. Intell., 54 (2024), 12112–12127
-
[44]
Y. Zhu, Y. Zhou, L. Yan, Z. Li, H. Xin, W. Wei, Scaling graph neural networks for large-scale power systems analysis: empirical laws for emergent abilities, IEEE Trans. Power Syst., 39 (2024), 7445–7448