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Abstract

This study focuses on applying the Lie symmetry method, to obtain exact solutions in multiple forms for the (3 +1)-
dimensional (3D) heat model This equation is a well-known model frequently used to describe numerous complex physical
phenomena. Initially, the geometric vector fields for the 3D heat-type equation are determined. Using Lie symmetry reduction,
we report a wide array of exact analytical solutions that encompass trigonometric and hyperbolic solitons, Lambert functions,
polynomials, exponential and inverse functions, hypergeometric forms, Bessel functions, logarithmic forms, rational forms, and
solitary wave solutions. These solutions include many rational forms that uncover intricate physical structures that have not
been previously reported. The solutions presented in this study are original and significantly distinct from previous findings.
They have significant potential for application in diverse fields, including fiber optics, plasma physics, soliton dynamics, fluid
dynamics, mathematical physics, and other applied sciences. The findings demonstrated that these mathematical techniques are
efficient, straightforward, and robust, making them suitable for solving other types of nonlinear equations.
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1. Introduction

In recent decades, numerous robust nonlinear models have been employed to represent various real-
world phenomena across diverse fields, including plasma physics [6, 24, 38, 41], optical fiber technology
[21, 25, 43, 44], chemical physics, fluid dynamics, solid-state physics, and acoustics. Given their signif-
icance, finding the exact solutions to these equations is of great importance. However, obtaining such
solutions is often a challenging task because they are typically achievable only in specific cases. In re-
cent years, considerable progress has been made in deriving exact explicit solutions for nonlinear partial
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differential equations (PDEs), leading to the development of various methodologies [4, 7-10, 12, 15, 22, 31—
33, 37]. Among these methods, the Lie group method proved to be an effective, dependable, and remark-
able approach for solving nonlinear PDEs. This method, which is based on the symmetries of differential
equations, has inspired extensive advancements in the search for precise solutions. The Lie group ap-
proach [5, 16, 27, 28, 30] offers a foundational framework [11, 26] to identify the symmetries of nonlinear
complex systems. One of its notable features is the ability to reduce the dimensionality of an equation by
one through a single application. Consequently, the Lie group method is regarded as a standard, efficient,
and highly versatile tool within group-theoretical techniques that enables the resolution of a wide range
of equations [14, 23, 39, 42].

The nonlinear heat equation is a classical topic in the theory of PDEs and remains a fertile ground
for new insights and scientific development, even after decades of research. Its relevance extends beyond
mathematics owing to its wide range of practical applications. The equation models various phenomena
including heat and mass transfer, combustion, explosions, filtration, chemical reactions, and biological
processes. In this article, we undertake a detailed analysis of this equation

v —Adiv(g(v) gradv) =0, (1.1)

where v := v(t,x) : RxR¥Y*! - R, v € {0,1,2}. In the literature, it is known as the nonlinear heat
equation or filtration equation [34], and is also recognized as a porous medium equation [36]. Depending
on the physical context, the function v > 0 describes either the density of the medium or the tempera-
ture, whereas g(v) > 0 corresponds to either the filtration coefficient or the heat conductivity coefficient.
The authors investigated the derivation of invariant solutions for the nonlinear heat equation (1.1), which
exhibits the characteristics of a heat wave and is understood as a configuration comprising two hyper-
surfaces: v(t,x) > 0, which represents the perturbed state, and v(t,x) = 0, which corresponds to the
unperturbed or background state. These regions are smoothly connected along a sufficiently regular
hypersurface I'(t,x) = 0 that defines the propagation front of the heat wave.

The study of heat wave propagation in a perfectly cold medium at a finite velocity, along with the first
examples of heat-wave-type solutions, was introduced by Zeldovich and Kompaneets [40]. Subsequently,
Barenblatt [3] obtained comparable results for filtration processes by investigating various self-similar
solutions. Sidorov et al. conducted further research on the solvability of boundary value problems for
heat equations with heat-wave-type solutions within the context of analytic functions. A novel approach
to boundary conditions, including the Sakharov problem on heat-wave initiation, was formulated in [20]
using the characteristic series method. These results were established for both one-dimensional formu-
lations (see [19, 35]), including cases involving moving boundaries [18] and multidimensional scenarios
[17]. The three dimensional case of Eq (1.1) is as follows

Vi —A(g(V)vx)x — A(Q(V)Vy)y —Algv)vz), =0,

or
Ve =g WV5 + gV + g'(WVE + g(W)vyy + 9" VIV + g(v)vzz) = 0. (1.2)

The primary goal of this study was to derive new explicit solitary wave solutions for 3D heat-type equa-
tions using the Lie symmetry method [13, 29]. By applying this method, a diverse range of exact analytical
solutions are obtained, including trigonometric and hyperbolic solitons, Lambert functions, polynomi-
als, exponentials, inverse functions, hypergeometric forms, Bessel functions, logarithmic forms, rational
forms, and solitary wave solutions. These solutions include many rational-form solutions that reveal
intricate physical structures that have not been previously reported. The solutions presented herein are
entirely novel and significantly distinct from earlier results. They have important applications in various
tields such as fiber optics, plasma physics, soliton dynamics, fluid dynamics, mathematical physics, and
other areas of applied science. Additionally, the dynamic behavior of these solutions was demonstrated
both graphically and physically using 3D visualizations and contour plots. This approach highlights the
rich and varied physical phenomena encapsulated by the obtained solutions.
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This paper is organized into three main sections. Section 1 provides an overview of the historical
background and motivation behind the study. Section 2 introduces the fundamental concepts of Lie
symmetry analysis, focusing on its application to heat-type equation. Section 3 explores the derivation of
infinitesimals and the application of Lie group transformation methods to derive exact solutions. Section
4 focuses on the conserved quantities of the examined model. Finally, Section 5 presents an analysis of
the findings and outlines the potential future research directions.

2. Symmetry classification of the heat Eq. (1.2)

In this section, we focus on the symmetry classification based on various forms of the heat conductivity
coefficient g(v) for the 3D heat equation (1.2). By the point form of Lie group, we have ([13, 29])

vav+Bpv, %Y, zt)+0(BY), Tat+pOv,xyzt)+O0(B),
X~ X+ Bd)l(v,x,y,z,t) + O([Sz), gry+ Bd)z(v,x,y,z,t) —1—0([32),
Z~z+ B(D3(v,x,y,z,t) +O(f52).

The vector field form for the 3D heat type equation (1.2) is given by [29]

0

X = xp—+¢9—+¢z +1|)t n’—-
ov

The objective is to determine the infinitesimal functions {*, ¥, = ', and n¥, while the operator X
satisfies invariance criterion ([29])

xt2 (Vi — A(QI(V)VXZ + g(V)vax + QI(V)Vy2 + Q(V)Vyy + QI(V)VZZ + 9(")"21)”(1.2) =0, 2.1)

where X2/ denotes the second prolongation of X.

Case A: g(v) is arbitrary function, and X; = aat' Xy =

0 0 —,0 _ ., 0 0
Zx — X9z X7 =25y — Yoz, Xg = 2ax+2ay+zaz+tat

Case B: g(v) =bv, where b is a constant. In this case, the solution of (2.1) provides that, system (1.2)
admits the generators X1, X, X3, X4, X5, X¢, X7 and the following

— 0 — 40 _ 4O _
x3—a Xy = 37/ Xs = Ygx — X5y, X6 =

0 0 6l 0 0 0
Xg=t—— Xg=x—+Yy=—+z—+2v—.
5t vaV 9 xx—i-yy—i-zz—i-v
Case C: g(v) = bv?, where b is a constant. In this case, the solution of (2.1) provides that, system (1.2)
admits the generators X1, X5, X3, X4, X5, X¢, X7 and the following

Ygotl vy 0 0,00
ot 20v 0T ox Yoy T Faz T Vav
3. Group invariant solutions and their dynamics
3.1. Symmetry reductions for Case 1: g(v) is arbitrary
(i) Xy = a%' The symmetry generator a% provides
vix,y,z,t) =p(, kb, j=y, k=z l=t 3.1

Eq (1.2) with the variables (3.1) becomes

pL—Ag'p;” — Agpj; — Ag'pi” — Agpkk = 0. (32)
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For equation (3.2), the infinitesimal operators are outlined by

d d d d .0 ijd k3 .0
h=qp % dj’ B3 =g 9 9 ok’ ds 2 0j oo

Yo = a%‘ gives p(j, k,1) = q(o, 1), where o =k, T = 1, which ensures the reduction of (3.2) into the equation

gr —Ag'qe? —Agqoo = 0. (3.3)
For further reduction of (3.3), we use the symmetries stated below
0 0 o0 0
Zl = %, ZQ = a, Z3 = E%‘f”fa

Zp = % yields q(o, 1) = 0(s), where s = 0. Using the invariants of %, we acquire the ODE
9'0s% + g0ss = 0.

If g = 0e®?, then
LambertW (bZ(cls + cz)e_l) +1

O(s) = ,
(s )
and the solution of (1.2) is
LambertW (bz(clz + cz)e*1> +1
vix,y,z,t) = .
b
(ii) X3 = %. The symmetry generator % gives
vix,y,z,t) =p(, k1), j=x, k=z 1=t (3.4)
Eq. (1.2) with the variables (3.4) becomes
PL—Ag'p;” — Agpj; — Ag'pi” — Agpkk = 0. (3.5)
For equation (3.5), the infinitesimal operators are
0 0 0 2 0 jo ko 0
_ — —_ — —_ — :k——.i = - — —_ —
h=gr R2=g B=g0 4= g B0 T2k Tl

Yy = a%' gives p(j, k, 1) = q(o, 1), where o = k, T = 1, which ensures the reduction of (3.5) into the equation

gt —Ag'qe? —Agqoo = 0. (3.6)
For further reduction of (3.6), we use the symmetries stated below
0 0 o0 0
Z’l - g, Zz - a, Z3 — E%‘i‘ﬁfa

Zp = % yields q(o,T) = 0(s), where s = 0. Using the invariants of %, we acquire the ODE
g'05> 4 g0ss = 0.
If g = 0%In(b0), then
LambertW (79c1(c2+s)eflb3>
e 3 +

0(s) = 5 p

Wi

and the solution of (1.2) is

LambertW <79c1 (cp+2z) e ! b3)
3 +

b

[SSIEY

v(x,y,z,t) = ¢
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3.2. Symmetry reductions for Case 2: g(v) = bv
DX +X+X=2+2+ %. The symmetry generator & + 2 + % gives

V(Xzy/Z/t):p(jzk/U/ j:Z/ k=t—x, 1:U—X (37)
Eq. (1.2) with the variables (3.7) becomes

—Abp} — 2pKpibA — 2bApi — 2bAppuL — 2bAPPiL — PPjjbA — PPrkbA — p7bA + i = 0. (3.8)

For equation (3.8), the infinitesimal operators are

d d d d o .0 d o .0 d
= -_— = -_— = -_— :.— ki -L— -, :li' _.7_2'7_
Y1 5 =5 U=50 I3; ko + a1+pap s 5 Jax Y

The linear combination Y; + Y3 = a%' + % gives p(j, k, 1) = q(o,T), where 0 = k, T = 1 —j, which ensures
the reduction of (3.8) into the equation

—AbG —2qoqbA —3Abq3 —3Abqqrr —Abqqoo — 2Abqqor + qo = 0. (3.9)
For further reduction of (3.9), we use the symmetries stated below

0 0 0 0

0
= — — Z, e JE— PR —_
21 30 Z , A3 o 0_+T —i—qaq

ot R ot

21+ 2y = % + % yields q(o, 1) = 0(s), where s = T — 0. Using the invariants of % + %, we acquire the
ODE
—2AbO2 —2Ab00ss — 05 =0,

and its solution is

__ % s _
4c1b2A2 | 4cb2A2

4LambertW(ele 7bAc, clbz)\2+4c1b27\2+cz+s
O(s)=e 4e1b22% +2c1bA.
Therefore, the solution of (1.2) is
__© ,y%
_ 252
4LambertW(e Le 4C12b)7\\cle de1b7A clbz?\2+4clb27\2+c2+y727t
- 232
v(x,y,z,t) =e 4e1b7A +2¢1bA.

() X+ +Xs =2+ 2+ 2.
The symmetry generator % + % + % provides
vix,y,z,t) =pG, k1), j=y, k=t—x, l=z—x. (3.10)
Eq. (1.2) with the variables (3.10) becomes
—Abp — 2pip1bA — 2bAp] — 2bAppiL — 2bAPpit — PPjjbA — pprkbA — pibA + pic = 0. (3.11)

For equation (3.11), the infinitesimal operators are

) 0 0 ) ) ) ) 0 0 0
= —_— = —_— = —_— :.— k‘i L— -, :li'_'i_Z'i.
KA aj,yz 3K’ Y3 K Ya Jaj—i— ak+ al+pap Ys % I3 97
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Ys = la% —j% —2)'% gives p(j, k, 1) = q(o, T), where 0 = —% +%, T = 2j? + 12, which ensures the reduction
of (1.2) into the equation

—bAqQqeo — 16qq,bAT —AbgZ +2qs — 16bAq. (Tq. + q) = 0. (3.12)

For further reduction of (3.12), we use the symmetries stated below

0 0 0
, 2y = 0— + 27—

Zl:% do 61+qa'

0

21 = aaTy yields q(o, T) = 0(s), where s = 1. Using the invariants of 5,

we acquire the ODE
—16bA (s6005s + 035+ 050) =0,

and its solution is
0(s) = &+/2¢1 In(s) + 2c,.

For (1.2), the solution takes the form

vix,y,z,t) = j:\/ch In(2y2 + (z — x)?) + 2c,. (3.13)

Figure 1: Visual analysis of the solution (3.13): (a) three-dimensional dynamics; (b) two-dimensional dynamics for the values
y =10,y =2.0,y =3.0; and (c) contour dynamics.

(iii) X5 = ya—ax — x%. The symmetry generator y% — x% provides
vix,y,z,t) =p(, k1), j=t k=z Ll=x>+y> (3.14)
Eq. (1.2) with the variables (3.14) becomes
—4p?bAL — 4pp AL — 4bAppy — ppikbA — Abp% +p; = 0. (3.15)

For equation (3.15), the infinitesimal operators are

0 0 0 0 0 0 0
yl:i?j' Y=+, 1Y Yy=k—+2l— +2p—.

ok’ 7% Pap’ ok ot T Pop
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Y1 = a% gives p(j, k,1) = q(o,1), where 0 = k,T = |, which ensures the reduction of (3.15) into the
equation

2
—4b (qan 43T+ qqc + qqf" + q4—“> A=0. (3.16)
For further reduction of (3.16), we use the symmetries stated below
0 0 0 0 0 0 o0qd
= — =q— =0— —, 2= (t—0%)— —doT— + — —.
1= 550 2= Ay R = 05 H 2 Ze = (T oT) gt —dot 4 5

21 = % gives q(o,T) = 0(s), where s = T. Using the invariants of %, we acquire the ODE
—4bA (50055 + 035 +050) =0,

and its solution is
0(s) = ++/2¢1 In(s) + 2c,.

For (1.2), the solution takes the form

V(x,y,2,1) = £1/2¢1 In(x2 + y2) + 2cs. (3.17)

Figure 2: Visual analysis of the solution (3.17): (a) three-dimensional dynamics; (b) two-dimensional dynamics for the values
y =10,y =2.0,y =3.0; and (c) contour dynamics.

(iv) Xg = xa—aX + y% + z% + 2\1%. The symmetry generator x% + y% + z% + Zv% provides

v(x,y,z,t) = 2p(, k1), j=t, k:%, 1:2. (3.18)

Eq. (1.2) with the variables (3.18) becomes

— PrkPDAK? — 2P pbAKL — bApp1 12 — Abp2 k? — 2Abpikpil — p2bAlZ
k 1

(3.19)
+ 6AbpKkp + 6bAPP1L — PPikbA — 6Abp? — bApp1L — Abp: — bApT +pj = 0.

For equation (3.19), the infinitesimal operators are Y; = a%' Yo = —1% + k%, Ys = ja% —P%, Ys =
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2 . .
(K7 + 1) g + kL& +2pkay, Ys = S + (17 + %)% +play. Y2 = —lgk + kg gives p(j, k1) = q(o, 1),

where o = j, T = k? + 12, which ensures the reduction of (3.19) into the equation

—4btAq (T+1) qrr —4bTA (T+ 1) qi +10b <T— ;) qAq. —6Abg? + qo = 0.

For further reduction of (3.20), we use the symmetries stated below

0 0 0
Zl—ai,r, ZZ—O‘%—qa.

21 = % yields q(o, 1) = 0(s), where s = 1. Using the invariants of %, we acquire the ODE

5 362
—4bA (3(3—1—1)9955—1—(32—1—5) 02 +0 <—23+1> es+2> =0,

and its solution is

O(s) = (—6\/s+1(9\/s+11n(\/s+1—1)czsz—9\/s+lln(\/s+l+1)c252

1
ii
24+/s+1
—72Vs+1In (Vs +1—1)cos +72vs + 1In (/s + 1+ 1)cos +3c15%Vs + 1

+24Vs+1In(Vs+1—1)c —24Vs+1In(Vs+1+1)cp —24Vs + 1cgs — 110c,s>

1
2

+8c1\/s+1—10czs+10002)> .

For equation (1.2), the solution takes the form
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(v) Xg = t2 —v2. The symmetry generator t & —v2 provides

PG, k, 1)

v(ix,y,z,t) = L

, j=xk=yl=z

(3.20)

(3.21)
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Eq. (1.2) with the variables (3.21) becomes
—p — Abp} — Abppj; — Abpy, — Abppii — Abpt — Abppu = 0. (322)
For equation (3.22), the infinitesimal operators are Y; = a%" Yo =2 Y= Ya = ka%‘ — i Y5 =

1&% —ja%, Ye = ja%. —|—k% —1—16% —|—2p%. Ys = a% gives p(j, k,1) = q(o, 1), where ¢ = j,T = k, which
ensures the reduction of (3.22) into the equation

—2Abg* —Abqqrr —Abqqec —Abgs —AbgZ = 0. (3.23)
For further reduction of (3.23), we use the symmetries stated below
21 =75=, 20 =+ Z’3:qa*, 24 =T — 0.

Z1 = a% gives q(o, 1) = 0(s), where s = 1. Using the invariants of a—ac, we acquire the ODE

—20% — 0055 — 02 =0,

and its solution is

0(s) = j:\/—cl sin(2s) + cp cos(2s).
For (1.2), the solution takes the form

o sn(2 P
vy, 2, 1) = 4 Y ZC1SIN2Y) +cr cos(2y) (3.24)

t

Figure 3: Visual analysis of the solution (3.24): (a) three-dimensional dynamics; (b) two-dimensional dynamics for the values
t=1.0,t=2.0,t =3.0; and (c) contour dynamics.

(vi) Xy +Xg = a% +t2 —v2. The symmetry generator a% +t2 —vZ provides

v(x,y,z,t) =e *p(j, k1), j=x,k=y l=te = (3.25)
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Eq. (1.2) with the variables (3.25) becomes

2 2
—1? (Abppjj + Abppik + PpubA 12+ pbA 12 + (5blAp — 1) py +2b <p2 + % - %) A) =0. (3.26)

For equation (3.26), the infinitesimal operators are Y; = a%" Y = %, Ys = ka% — j%, Yq = l% —p%.
Yz = ka% —j% gives p(j, k,1) = q(o,1), where 0 = 1,7 = % + k2, which ensures the reduction of (3.26)

into the equation
—2Abg* —Abqqrr — Abqqec —Abqs —AbgZ = 0. (3.27)

For further reduction of (3.27), we use the symmetries stated below

0 0 0 0 0
2-1 = — Zz—a—T, 2,3—qa, Z4—T%—O‘a.
21+ 23 = % + q% yields q(o,T) = e%0(s), where s = 1. Using the invariants of % + q%, we acquire
the ODE
—4\bO% — AbOOss — AbO2 =0,

and its solution is

\/—2\/§ c1 sin (2\/§ s) + 2 cos (2\/§ s) V2 Co

B(s) ==* 5

For (1.2), the solution takes the form

ete‘z—z\/—zﬁ ¢1 sin <2\/§ (x2 + y2)> +2cos (2\/§ (x2 + y2)> V2c¢,
+

V(X, Y,z, t) = (328)

2

Figure 4: Visual analysis of the solution (3.28): (a) three-dimensional dynamics; (b) two-dimensional dynamics for the values
t=1.0,t=2.0,t=3.0; and (c) contour dynamics.



M. Usman, A. Hussain, A. M. Zidan, J. Herrera, ]J. Math. Computer Sci., 41 (2026), 132-149 142

3.3. Symmetry reductions for Case 3: g(v) = bv?
(i) X+ Xy = % + a%' The symmetry generator % + a% provides

vix,y,z,t) =pG, k1), j=x, k=y, l=t—z (3.29)

Eq. (1.2) with the variables (3.29) becomes

—bAp*pu — bAP*p; ; — bAP*pick — 2ppibA + p1 — 2bAp (1DJ2 +p}) =0. (3.30)
For equation (3.30), the infinitesirnal operators are Y; = a@/ Yo=Y =2, Y = —j%, Y5 =
Ja —|—kak+laal+ Y1+ Y = 3 +%gives rG, k1) =q(o,T), w erecr—k,”c—l—), which ensures

the reduction of (3. 30) into the equation
—bAG2qoo — 2bAq2qer — 2qq2bA — 4qq2bA + g = 0. (3.31)
For further reduction of (3.31) we use the symmetries stated below

0 0 0 0
21 =75—, Zp = Z3=Gf+’r—+%

0
do ot do ot dq

q
214+ 2y = % + % gives (o, T) = 0(s), where s = T — 0. Using the invariants of % + %, we acquire the

ODE
—3bA6%0s — 6002bA + 0 = 0,

and its solution is
6(s) = InverseFunction [3b7\ (9b2?\2c12 In (3bAc; + #1) — 6bAcy (3bAcy + #1) + % (3bAcy + #1)2) &] [s + cal.
For (1.2), the solution takes the form
v(x,y,z,t) = InverseFunction [3b7\ (9b27\2012 In (3bAcy +#1)

1
— 6bAc (3bAcy +#1) + 7 (3bAer + #1)2) &} [t—z—x—y+cal.
Gi) X1+ X5 = & +y — x%. The symmetry generator & +y2 — x% provides
vix,y,z,t) =pG, k1), j=2z k= —arctan<y> +t, 1=x2 +y2. (3.32)

Eq. (1.2) with the variables (3.32) becomes

2
—bAPZPik — 4p?pubA 12 — p?pj;bAL— 2pplbA + pil — 8ALD (l‘p % + IZ) p=0.  (3.33)
For equation (3 33), the infinitesimal operators are Y; = Yo = ai Ys = ]a) + 216l —i—pap Ys =

J
j a) + 21 T+t P3p ap gives p(j, k, 1) =j q(o,T), where 0 =k, T = )iz which ensures the reduction of (3.33) into

the equat1on

—4Abg? T — 8qq2b TN — 4Abq2q T 4 6AbG> T2 g

3.34
—8qq2b A — 2ATbq® — 4Abg?Tq. — bAGqee — 23 bA + qoT = 0. (3.39)
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For further reduction of (3.34), we use the symmetry generator 2 = ->. 2 = 2 yields q(c,1) = 0(s),
where s = 1. Using the invariants of 2, we acquire the ODE

92
—4\ <se (s+1)0ss + (25* +25) 03+ 0 (—323 + 1) 0 + 2) Obs =0,
and its solution is

9(5)2_41<\/81+;1<181n<\/m+1> \/8—1—71023—181n<\/¢—1> Vs +1cys

—121n<\/s—|—1 +1) \/s+1cz+121n(\/s+1 —1) Vs+1cs—6vs+1cys—16cys2

1

3
t4vs+1cy +28023+44c2>> (Lf<ﬁ<181n<\/s+ +1) Vs +1cs
—181n(\/s+1 —1) Vs +1cys —1211'1(\/5—1—1 +1) Vs+ic

1
3
n 121n(\/s 11— 1) Vs +1cy—6VsF1cs—16cs2 +4vs +1cq +28¢ys + 44c2)> )

For (1.2), the solution takes the form

V(Xfyfzft)Z_)‘((l)l(usm( (t;2)+1+1> (tx 2 167
+

4 t—2z XZ
2

_181n< (t;z) +1—1> (tx_zz) +1 ¢ (tx_zz) —121n<\/ (tx_zz) +1+1>
(tx_zz)+1cz+12ln< (t;zZ)Jrl—l) (t_f)ﬂcz—m/(tx e “;27‘)

t— 2 t— 1
—16cz(( Z)) IV Gt B D Y G2 B
X (t ZZ)—i-l

x2
1—1)

) =3
x(181 (w/( +1+1> =2 gt 181 (
« (tx Dy 2( _ 121 (w/ 1+1>,/ tlc,

+121n<\/(t7 ) i 6/ <(t;21))2
+4 (tx 2 1)+ 286, )+44C2>> >
(iii) X1+ Xg = &+t — 3 2. The symmetry generator & +t2 — 32 provides
v(x,y,z,t) = p\(/]%)’ j=x, k=y, l=z (3.35)

Eq. (1.2) with the variables (3.35) becomes

1
—2p (?\bppjj -+ Abppix + Abppu + 2Abp§ + 2Abpi. + 2Abpt + 2) =0. (3.36)
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For equation (3.36), the infinitesimal operators are Y; = a%" Yo = %, Ys = %, Yo = kg —j%, Ys =

d d
jav Ye = laak al, Yz _]a —I—kak +Lal +pap Y = % gives p(j, k, 1) = q(o, 1), where c=j,t=1,
wfuch ensures the reduction of (3 36) into the equation

1
—2q <b7\qqcc + Abqqer +2q2bA + 2bAgE + 2> =0. (3.37)

For further reduction of (3.37), we use the symmetries stated below

2 2 o 0 d a d
= — = — Z, = T— — —/Z, —_— e
A= g R T g R T Tas T 0 M= O T gy

21+ 2y = % + % yields q(o, 1) = 0(s), where s = T — 0. Using the invariants of % + %, we acquire the
ODE

1
—40(60,5bA + 20%bA + 1) =0.

Since 0(s) # 0, therefore 80,bA + 202bA + % =0, and its solution is

1
2/
e 160Ae112 413V e Te0AC 414 ) /(3V/eT00A1#14) ) & [s + cal.

0(s) = InverseFunction [i ((Zﬂxfbﬁ Hypergeometric2F1 [

=~ W
=1 N

4 7

For (1.2), the solution takes the form

v(x,y,z,t) = Jllﬁ (InverseFunction [ ((2[ 2vVbVA AHypergeometric2F1 E % Z,
e_l6b?‘°1#14} #13\/W) / (3%@))&} 2—x+ cz]).
(iv) Xy + X = a% + Za% — xa%. The symmetry generator a% + Za% — Xa% provides
v(x,y,z,t) =p(j k1), j=t k=vy, l=x>+2>—2x (3.38)
Eq. (1.2) with the variables (3.38) becomes
—4bAp? (1+1) pur — 8bAp (L + 1) p? — 4bAp?py — Abpyxp® — 2Abpp% +p; = 0. (3.39)
For equation (3.39), the infinitesimal operators are Y; = a%" Yo = %, Ys = JeT; — 5 ap' Yg = ak +(2+

21)% +p%. Y1 = a% gives p(j, k,1) = q(o, 1), where o0 = k, T = 1, which ensures the reduction of (3.39)
into the equation

2
—4b\Aq <q (T+1) ql‘” +(21+2) g2 +qq.+ qz") =0. (3.40)
For further reduction of (3.40), we use the symmetries stated below
0 0 0 0 0 o0q 0
=, 2=q5—, L3 =0 —, Ly =(1—0%)— —4 1)— 4+ ——.
1= 55 %2 qaq,Z3 03 T 2T +2) 5, 2y =(t—07) 7 —do(t+1)7-+ 3 3q

21+ 2o = % + % yields q(o, 1) = e°0(s), where s = 1. Using the invariants of % + %, we acquire the
ODE
0(—46bA0,s — 40bAOss — 8bAB2s — 8bAB2 — 4bABOs — 307bA) = 0.
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Since 0(s) # 0, therefore
—40bA0sss — 40bAOss — 8bABZs — 8bAB2 — 4bABO, — 36%bA =0,

and its solution is

W=

—6Bessell(0,3v/—s — 1) csgn(s + 1) ¢y + 6 BesselK(0,3v/—s — 1) csgn(s + 1) ¢q
gn gn
2

O(s) =—

[SSIEY

+ %\/5 (—6 Besssell(0,3v—s — 1) csgn(s + 1) co + 6 BesselK(0,3v—s — 1) csgn(s + 1) cl)

For (1.2), the solution takes the form

ey
2

+ %\/569 ((601 —c3) ]3esselI(0,E’>\/—(x2 +22-2x)—1) csgn((x2 + 22 —2x) + 1) )

WI=

vix,y,z,t) = <(6c1 — ) BesselI(O,C%\/—(x2 +22-2x)—1) csgn((x2 +22—2x)+ 1) )

(3.41)

1

3

6 —y=0

l—y=1
—y=2

(d)

Figure 5: Visual analysis of the solution (3.41): (a) three-dimensional dynamics; (b) two-dimensional dynamics for the values
y =10,y =2.0,y =3.0; (c) contour dynamics; and (d) complex dynamics.

W) X3+ X7 = % + z% — y%. The symmetry generator % + z% — y% provides

1 1
vix,y,z,t) =p(j,k 1), j=tk=x1l= —Ezz — Eyz —z (3.42)
Eq. (1.2) with the variables (3.42) becomes
2 1 AP 21\ — byl o 2 _
2Apb (1 5 | Pu +4Apb (1 5 )P +2p1p”bA — Abp“pxk — 2Abppy +p; = 0. (3.43)

For equation (3.43), the infinitesimal operators are Y; = a%" Yo = %, Ys = j%— — %%, Yy = k% + (21—

1)% —|—p%. Y14+ Y = a% + % gives p(j, k, 1) = q(o, 1), where o = 1,7 = j, which ensures the reduction
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of (3.43) into the equation

2¢°A <a— ;) bqoo —Abq?qrr +4gA <a— ;) bq2 +2Abq?*qe —2Abqq2 — g = 0. (3.44)

For further reduction of (3.44), we use the symmetries stated below

E,Z (20— 1)3—1- i-I-ﬂi
0T

= dc | 9T | 20q

Zl +2p = ar + (20— 1)ac —|—TaT + 3 aq yields q(o,T) = 6(s), where s = 0. Using the invariants of
+20—-1)2 3¢ +TaT +4 5 aq' we acquire the ODE

1
2A0b <e (s— 2) Bss + (25 —1) 02 +ese) =0.

Since 6(s) # 0, therefore
1
0 (s—2> Bss + (25 —1)02 + 0,0 =0,

and its solution is

[SSIEY

(—12¢;In(2s — 1) + 8¢,)? | W3 (—12¢1In(2s—1) +8¢c5)*

Ols) =~ 4 4

For (1.2), the solution takes the form

( 12¢1 In(2(—1 yr—z)-1) +802)%

4 1 (3.45)
N W3 (—12¢1 In(2(—1 yr—z)—1) —i—8(:2)3

v(x,y,z,t) =

Figure 6: Visual analysis of the solution (3.45): (a) three-dimensional dynamics, (b) two-dimensional dynamics for the values
z=1.0,z=2.0,z =3.0; and (c) contour dynamics.
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4. Local conserved flows

The conserved flows for the heat equation (1.2) acquired using the multiplier approach [1, 2] are
presented in this section. The determining equations for the multiplier function A(x,y, z,t,v) is given by

5
5 (Vi = Ag' V)V + gV + g'(V)Ivy? + g(v)vyy + 6" (VIv22 + g(v)vz2)) =0, (4.1)
where 5 0 d d d d
- —Dy——-Dy——D,——-D,— +.-.
v 0v t ovy¢ * vy Y vy v, +

From (4.1), we obtain the following set of equations for multipliers
Axx = _/\yy —Nzz, Ae=0, Ay =0,

and its solution is stated as
Ax,Y,z,t,v) = c1 + c2z + c3y + cax. 4.2)
The multipliers given in (4.2) fulfills the requirement
DT+ DyT*+DyTY + D, T?
= Al A I g+ 0+ gy + 8 (2 gl

Incorporating the multipliers A; =1, Ay = z, A3 =y, and A4 = x into (4.3) yields the four conserved
flows for (1.2) listed below, respectively,

Tlt =Y, th =2ZVv,
T, = T = —Ag(v)vx, T, — T2 = —Azg(v)vx,
T1Y = —Ag(v)vy, 2 To¥ =Ag(v)(—zvy +yvz),
le = 7)\9(\))\)2/ TZZ = *)\Q(V)(y\)y + sz)/
T3t = yv, Tt = xv,
T ] T = A (—yve +xvy), 7 ) T =A(=xgive + [gviav),
37 T3Y = —Ag(v)(xvx +yvy), T y_ _
3 g Yvy Ty Axg(v)vy,
T5* = —Ayg(v)vz, T4 = —Axg(v)vy.

5. Discussion and the conclusions

This study explored innovative applications of the Lie symmetry analysis method to solve heat-type
equations. This approach successfully yields novel and exact invariant solutions for this equation. A di-
verse range of solutions exist, including trigonometric and hyperbolic solitons, Lambert functions, poly-
nomials, exponential functions, inverse functions, hypergeometric forms, Bessel functions, logarithmic
forms, rational functions, and solitary waves. These solutions are novel and have not been addressed in
previous research on this topic. They provide insights into the dynamics of various soliton wave structures
and serve as valuable tools for verifying the accuracy, enabling comparative analysis, and supporting nu-
merical studies in the field. A key advantage of the results presented in this study is the practical utility
for further investigation. In addition, the spatial temperature distribution on a conductive surface is de-
picted through different solution types, as illustrated in Figures 1-6. The dynamics of these distributions
were captured through two- and three-dimensional graphs as well as contour plots. Furthermore, the in-
tricate spatial temperature dynamics corresponding to the solution (3.41) are highlighted in Figure 5. By
leveraging the advanced capabilities of these techniques, exact solutions can be obtained for a wide range
of real-world problems in science and engineering. This provides a strong motivation for researchers to
delve deeper into this promising field of study. Furthermore, the approach utilized in this study can be
applied to solve other challenges in mathematics and physics. Ongoing research is required to develop
new and more efficient analytical methods for solving nonlinear PDEs.
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