A prey-predator approach to tumor-immune and cancer treatment: a circuit-based analysis with non-local derivatives
Authors
C. Baishya
- Department of Studies and Research in Mathematics, Tumkur University, Tumkur-572103, Karnataka, India.
R. George
- Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
R. N. Premakumari
- Department of Mathematics, M.E.S. Degree College of Arts, Commerce and Science, Malleswaram, Bangalore 560003, Karnataka, India.
A. J. Rangappa
- Department of Studies and Research in Mathematics, Tumkur University, Tumkur-572103, Karnataka, India.
S. Etemad
- Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India.
- Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran.
- Mathematics in Applied Sciences and Engineering Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah 64001, Iraq.
A. T. Alkhafaji
- Cardiology Department, College of Medicine, Al-Ayen University, Thi-Qar, Iraq.
Abstract
The dynamic interplay between the tumor and the immune system determines if cancer advances or retreats. This study investigates a three-dimensional nonlinear differential system incorporating tumor cells, hunting CTLs, and resting CTLs under the Caputo-Fabrizio fractional derivative framework. The complex and dynamic interaction between immune cells and tumor cells plays a crucial role in the development, progression, and treatment of cancer. Key dynamical aspects, such as the existence and uniqueness of solutions, equilibrium points, and their stability, are rigorously analyzed. To bridge theory with practical validation, circuit implementations are developed using MATLAB, enabling the comparison of computational precision and authenticity for the tumor model. This innovative approach highlights how circuit-based representations can enhance the understanding of tumor-immune dynamics, which further helps in the treatment of cancer. Numerical simulations, incorporating estimated parameter values, validate the theoretical findings and provide deeper insights into the system's behavior. These results contribute to a more comprehensive understanding of tumor progression and immune response modulation, paving the way for improved strategies in cancer treatment.
Share and Cite
ISRP Style
C. Baishya, R. George, R. N. Premakumari, A. J. Rangappa, S. Etemad, A. T. Alkhafaji, A prey-predator approach to tumor-immune and cancer treatment: a circuit-based analysis with non-local derivatives, Journal of Mathematics and Computer Science, 41 (2026), no. 1, 94--113
AMA Style
Baishya C., George R., Premakumari R. N., Rangappa A. J., Etemad S., Alkhafaji A. T., A prey-predator approach to tumor-immune and cancer treatment: a circuit-based analysis with non-local derivatives. J Math Comput SCI-JM. (2026); 41(1):94--113
Chicago/Turabian Style
Baishya, C., George, R., Premakumari, R. N., Rangappa, A. J., Etemad, S., Alkhafaji, A. T.. "A prey-predator approach to tumor-immune and cancer treatment: a circuit-based analysis with non-local derivatives." Journal of Mathematics and Computer Science, 41, no. 1 (2026): 94--113
Keywords
- Tumor-immune dynamics
- Caputo-Fabrizio fractional derivative
- circuit implementation
- stability analysis
- treatment of cancer
MSC
References
-
[1]
J. A. Adam, N. Bellomo, A Survey of Models for Tumor-Immune System Dynamics, Springer Science & Business Media, Boston (1997)
-
[2]
R. F. Alvarez, J. A. M. Barbuto, R. Venegeroles, A nonlinear mathematical model of cell-mediated immune response for tumor phenotypic heterogeneity, J. Theoret. Biol., 471 (2019), 42–50
-
[3]
L. Anderson, S. Jang, J.-L. Yu, Qualitative behavior of systems of tumor-CD4+-cytokine interactions with treatments, Math. Methods Appl. Sci., 38 (2015), 4330–4344
-
[4]
C. Baishya, P. Veeresha, Dynamics of the Dadras-Momeni system in the frame of the Caputo-Fabrizio fractional derivative, In: Special functions in fractional calculus and engineering, CRC Press, Boca Raton, FL, (2023), 241–269
-
[5]
S. Banerjee, R. R. Sarkar, Delay-induced model for tumor-immune interaction and control of malignant tumor growth, Biosystems, 91 (2008), 268–288
-
[6]
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85
-
[7]
L. G. de pillis, A. E. Radunskaya, C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 65 (2005), 7950–7958
-
[8]
K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3–22
-
[9]
S. Esmaili, F. Nasresfahani, M. R. Eslahchi, Solving a fractional parabolic-hyperbolic free boundary problem which models the growth of tumor with drug application using finite difference-spectral method, Chaos Solitons Fractals, 132 (2020), 17 pages
-
[10]
M. F. Farayola, S. Shafie, F. M. Siam, I. Khan, Mathematical modeling of radiotherapy cancer treatment using caputo fractional derivative, Comput. Methods Programs Biomed., 188 (2020), 39 pages
-
[11]
L. Galluzzi, E. Morselli, O. Kepp, I. Vitale, A. Rigoni, E. Vacchelli, M. Michaud, H. Zischka, M. Castedo, G. Kroemer, Mitochondrial gateways to cancer, Mol. Asp. Med., 31 (2010), 1–20
-
[12]
P. T. Hamilton, B. R. Anholt, B. H. Nelson, Tumour immunotherapy: lessons from predator-prey theory, Nat. Rev. Immunol., 22 (2022), 765–775
-
[13]
D. Hanahan, R. A. Weinberg, The hallmarks of cancer, Cell, 100 (2000), 57–70
-
[14]
M. Idrees, A. S. Alnahdi, M. B. Jeelani, Mathematical modeling of breast cancer based on the Caputo-Fabrizio fractalfractional derivative, Fractal Fract., 7 (2023), 14 pages
-
[15]
G. Jordão, J. N. Tavares, Mathematical models in cancer therapy, Biosystems, 162 (2017), 12–23
-
[16]
I. Kareva, K. Luddy, C. O’Farrelly, R. Gatenby, J. Brown, Predator-prey in tumor-immune interactions: A wrong model or just an incomplete one?, Front. Immunol., 12 (2021), 14 pages
-
[17]
G. Kaur, N. Ahmad, On study of immune response to tumor cells in prey-predator system, Int. Sch. Res. Not., 2014 (2014), 8 pages
-
[18]
S. Khajanchi, J. J. Nieto, Mathematical modeling of tumor-immune competitive system, considering the role of time delay, Appl. Math. Comput., 340 (2019), 180–205
-
[19]
V. Koudelakova, M. Kneblova, R. Trojanec, J. Drabek, M. Hajduch, Non-small cell lung cancer–genetic predictors, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 157 (2013), 125–136
-
[20]
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295–321
-
[21]
H.-L. Li, L. Zhang, C. Hu, Y.-L. Jiang, Z. Teng, Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2017), 435–449
-
[22]
J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 87–92
-
[23]
K. J. Mahasa, R. Ouifki, A. Eladdadi, L. de Pillis, Mathematical model of tumor–immune surveillance, J. Theoret. Biol., 404 (2016), 312–330
-
[24]
G. E. Mahlbacher, K. C. Reihmer, H. B. Frieboes, Mathematical modeling of tumor-immune cell interactions, J. Theoret. Biol., 469 (2019), 47–60
-
[25]
G. Mani, A. J. Gnanaprakasam, S. Ramalingam, A. S. A. Omer, I. Khan, Mathematical model of the lumpy skin disease using Caputo fractional-order derivative via invariant point technique, Sci. Rep., 15 (2025), 16 pages
-
[26]
I. Podlubny, Fractional differential equations, Academic Press, San Diego, CA (1999)
-
[27]
R. N. Premakumari, C. Baishya, M. K. A. Kaabar, Dynamics of a fractional plankton-fish model under the influence of toxicity, refuge, and combine-harvesting efforts, J. Inequal. Appl., 2022 (2022), 26 pages
-
[28]
R. Ramaswamy, G. Mani, R. Mohanraj, O. Ege, Mathematical SEIR model of the lumpy skin disease using Caputo-Fabrizio fractional-order, Eur. J. Pure Appl. Math., 18 (2025), 25 pages
-
[29]
A. S. Rashed, M. M. Mahdy, S. M. Mabrouk, R. Salah, Fractional order mathematical model for predicting and controlling Dengue fever spread based on awareness dynamics, Computations, 13 (2025), 16 pages
-
[30]
F. A. Rihan, M. Safan, M. A. Abdeen, D. Abdel Rahman, Qualitative and computational analysis of a mathematical model for tumor-immune interactions, J. Appl. Math., 2012 (2012), 19 pages
-
[31]
F. A. Rihan, G. Velmurugan, Dynamics of fractional-order delay differential model for tumor-immune system, Chaos Solitons Fractals, 132 (2020), 14 pages
-
[32]
E. Y. Salah, B. Sontakke, A. A. Hamoud, H. Emadifar, A. Kumar, fractal–fractional order modeling approach to understanding stem cell-chemotherapy combinations for cancer, Sci. Rep., 15 (2025), 16 pages
-
[33]
R. D. Schreiber, L. J. Old, M. J. Smyth, Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion, Science, 331 (2011), 1565–1570
-
[34]
R. L. Siegel, K. D. Miller, N. S. Wagle, A. Jemal, Cancer statistics 2023, CA Cancer J. Clin., 73 (2023), 17–48
-
[35]
J. G. Silva, A. C. O. Ribeiro, R. F. Camargo, P. F. A. Mancera, F. L. P. Santos, Stability analysis and numerical simulations via fractional calculus for tumor dormancy models, Commun. Nonlinear Sci. Numer. Simul., 72 (2019), 528–543
-
[36]
P. Veeresha, A numerical approach to the coupled atmospheric ocean model using a fractional operator, Math. Model. Numer. Simul. Appl., 1 (2021), 1–10
-
[37]
M. D. Vesely, M. H. Kershaw, R. D. Schreiber, M. J. Smyth, Natural innate and adaptive immunity to cancer, Annu. Rev. Immunol., 29 (2011), 235–271
-
[38]
M. Yavuz, N. Sene, Stability analysis and numerical computation of the fractional predator-prey model with the harvesting rate, Fractal Fract., 4 (2020), 22 pages
-
[39]
Zakirullah, C. Lu, L. Li, K. Shah, B. Abdalla, T. Abdeljawad, Mathematical insights into chaos in fractional-order fishery model, Model. Earth Syst. Environ., 11 (2025), 17 pages