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Abstract
The dynamic interplay between the tumor and the immune system determines if cancer advances or retreats. This study

investigates a three-dimensional nonlinear differential system incorporating tumor cells, hunting CTLs, and resting CTLs under
the Caputo-Fabrizio fractional derivative framework. The complex and dynamic interaction between immune cells and tumor
cells plays a crucial role in the development, progression, and treatment of cancer. Key dynamical aspects, such as the existence
and uniqueness of solutions, equilibrium points, and their stability, are rigorously analyzed. To bridge theory with practical
validation, circuit implementations are developed using MATLAB, enabling the comparison of computational precision and
authenticity for the tumor model. This innovative approach highlights how circuit-based representations can enhance the
understanding of tumor-immune dynamics, which further helps in the treatment of cancer. Numerical simulations, incorporating
estimated parameter values, validate the theoretical findings and provide deeper insights into the system’s behavior. These
results contribute to a more comprehensive understanding of tumor progression and immune response modulation, paving the
way for improved strategies in cancer treatment.

Keywords: Tumor-immune dynamics, Caputo-Fabrizio fractional derivative, circuit implementation, stability analysis,
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1. Introduction

Cancer, a non-communicable disease, has emerged as the most deadly and complex illness in the
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world. This disease is brought on by the body’s aberrant or mutant cells proliferating out of control,
and tumor cells are notorious for their capacity to multiply, divide, and expand rapidly [11, 13]. The
main factors contributing to the growth of tumors are their ongoing multiplication and propensity for
metastasis [19]. According to the American Cancer Society, there will be 609,820 cancer-related deaths
and 1,958,310 new cases in the US in 2023. Between 2014 and 2019, there were 99,000 new instances of
prostate cancer, representing an annual growth of 3%. Conversely, men seem to have more favorable
incidence patterns. While melanoma, breast, uterine, and liver cancers increased, women’s lung cancer
decreased half as quickly as men’s. The cancer death rate continued to decline despite the epidemic,
saving 3.8 million lives and representing a 33% drop since 1991. However, the rising incidence of breast,
prostate, and uterine corpus cancers, which cause the largest racial mortality disparities[34], may pose a
challenge to future progress. After cardiovascular diseases, it is the second most deadly infection [30]. A
wide range of illnesses, including over 200 conditions [1], fall under the general term "cancer" since they all
involve aberrant cells with disrupted regular mechanisms that govern normal cellular division, growth,
and death. Numerous genetic and metabolic processes tightly regulate and control the development,
division, and death of normal cells. Cells develop abnormally when these pathways are disrupted for
various reasons. Our immune system assists the host in the battle against harmful microorganisms and
malignant cells. It is a complicated network of cells, cytokines, lymphoid tissues, and organs. In cancer
development and progression, the immune system plays a dual role: it promotes tumor advancement
through immunized host selection and suppresses tumor growth by destroying tumor cells or preventing
expansion [33]. The processes of elimination, balance, and escape are involved in cancer immunoediting.
Tumor growth is inhibited by elimination, cell expansion is regulated by equilibrium, and cancer cell
variants with lower immunogenicity can proliferate into malignancies through escape [32, 37].

Mathematical modeling is an effective instrument that provides both quantitative and qualitative visu-
alizations of important biological scenarios. An effective mathematical model can assist in better under-
standing the dynamic interplay between tumor cells and the immune system, which could be important
in understanding the tumor and developing novel therapies for it. However, it is nearly impossible to
develop mathematical models that accurately describe such complex interaction processes. The truth is
that the complex relationship between immune components and malignant cells is represented by highly
idealized mathematical models. Consequently, it’s critical to develop basic mathematical models that can
illustrate the majority of significant immunological occurrences. Several studies employed the idea of
prey-predator to investigate the relationship between immune cells and tumors [12, 16, 17]. The prey-
predator model of the tumor-immune system differs from the conventional prey-predator framework. In
the latter case, the survival of the immune population is not dependent on the amount of prey (tumor
cells). Immune cells are the predators, and tumor cells are the prey. On their cell surface, tumor cells
create specific antigens that are recognized and eliminated by the host’s cellular immune response. For
instance, a delay-induced model was used in [5] to examine the relationship between the tumor and the
immune system as well as the control of the growth of malignant tumors. An analysis of the qualita-
tive behavior of tumor-CD4+-cytokine interaction systems with therapies was conducted in [3]. A unique
mathematical model for immune surveillance of malignancies has been created in [23]. Jordao and Tavares
originate a comparative model encompassing both cancer cells and healthy cells, offering a comprehen-
sive analysis of the suggested cancer model [15]. Khajanchi and Nieto explored the impact of time delay
on the dynamics of the tumor system [18]. Additionally, Mahlbacher et al. contributed to a deeper un-
derstanding of the relationship between cancers and the immune system, developing a model crucial
for informing cancer treatment strategies [24]. Idrees and Sohail have formulated a mathematical model
based on experimental research, elucidating the interplay between tumor cells and cytotoxic T lympho-
cytes. For the past three centuries, only mathematicians, physicists, and engineers have utilized fractional
calculus. However, fractional operations and their applicability have received a lot of attention recently
in a lot of unusual fields, such as hydrology, signal processing, heat diffusion models, competing species,
biology, [25, 27], medicine, finance, physics, synchronization of chaotic systems, atmospheric ocean prob-
lems, and hydrology [28, 29, 36, 38, 39]. Two integer order systems, which have been investigated using
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fractional calculus, provide an explanation for the fluctuations of the tumor-immune system [35]. The
paper [9] examines a fractional-order system that postulates tumor growth following drug application.
For the tumor-immune system with treatments, a delay model with fractional order has been created in
[31]. In [2], a mathematical model of immune response with cell-mediated tumor phenotypic heterogene-
ity has been studied. The authors of [10] provided a fractional derivative model that took radiation, cell
reproduction, and cell repair into account.

In this work, a mathematical model of uncontrolled tumor regression and progression in immune
system resistance is presented and analyzed, showing complex dynamic behavior in the parameter range
of interest. In this paper, we review a mathematical model of cancer remission that was initially shown by
Kaur and Ahmad [17]. Moving in line with the Sustainable Development Goal-3 of the United Nations,
our primary contribution in this paper is the analysis of the tumor model using the Caputo-Fabrizio frac-
tional derivative. A novel aspect of this work is the circuit-based implementation of the Simulink model
in MATLAB to simulate the tumor dynamics. The study explores key theoretical components, including
the conditions for the existence and uniqueness of solutions, as well as the local stability of equilibrium
points. A significant contribution is the incorporation of threshold dynamics and the biological meanings
of the stability of the equilibrium points are thoroughly justified.

The remainder of the paper is structured as follows. The fundamental definitions of the Caputo-
Fabrizio fractional derivative are covered in Section 2. The model construction and description are dis-
cussed in Section 3, and the existence and uniqueness of the solution are analyzed in Section 4. Section 5
is dedicated to the circuit implementation. In Section 6, the dynamics of the system, such as equilibria and
their local stability, and the validations of various threshold parameters are performed. The theoretical
results are validated by using Adams-Bashforth numerical technique in Section 7. The overall work is
concluded in Section 8.

2. Preliminaries

Here we present certain results associated with the Caputo-Fabrizio fractional derivatives, which are
utilized in this study to validate the conceptual results. As usual, the symbol L2(a,b) introduces the
space of square integrable functions on (a,b) and V[a,b] introduces the collection of vector functions that
operating on H1(a,b) so that

H1(a,b) =
{
g : g ∈ L2(a,b), g

′ ∈ L2(a,b)
}

.

Moreover, ∥W(t)∥ =
∑3

i=1 sup |wi(t)| is the norm of W(t) = (w1, w2, w3) ∈ [a,b], and the supremum is
taken on t ∈ [a,b].

Definition 2.1 ([26]). Let h(t) be a n-times continuously differentiable function and h(n)(t) be integrable
on [t0, T ]. The definition of the Caputo fractional derivative of order α for a function h(t) is then given by

CDαh(t) =
1

Γ(1 −α)

∫t
t0

h
′
(ζ)

(t− ζ)α
dζ, (2.1)

where h ∈ H1(a,b) such that 0 < α < 1. The singularity occurs when t = ζ for the kernel (t− ζ)−α in
(2.1). The following fractional derivative with exponential kernel was defined by Caputo and Fabrizio [6]
in 2015 by varying the kernel (t− ζ)−α with the function exp(−α(t−ζ)

1−α ) and 1
Γ(1−α) with A(α)

1−α , that is

CFDαh(t) =
A(α)

1 −α

∫t
a

exp
(
−

α

1 −α
(t− ζ)

)
f
′
(ζ)dζ,

where A(α) is any smooth positive function such that A(0) = A(1) = 1. The kernel does not exhibit
singularity for t = ζ in accordance with the Caputo-Fabrizio fractional derivative (CFFD), which states
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that the derivative of a constant is zero. Afterwards, Losada and Nieto [22] constructed a new CFFD
of order 0 < α < 1 by altering the kernel (t − ζ)−α with the function exp(−α(t−ζ)

1−α ) and 1
Γ(1−α) with

1√
2π(1−α2)

in (2.1), that is

CFDαf(t) =
(2 −α)A(α)

2(1 −α)

∫t
a

exp
(
−

α

1 −α
(t− ζ)

)
f
′
(ζ)dζ.

Definition 2.2. Applying the mentioned method in [22], we can express the Caputo-Fabrizio fractional
integral operator as follows:

CFIαt f(t) =
2(1 −α)

(2 −α)A(α)
f(t) +

2α
(2 −α)A(α)

∫t
0
f(ζ)dζ, t ⩾ 0.

As per the definition given above, for order 0 < α < 1, the fractional integral of Caputo type can be
obtained as the average of the function f and its integral of order one. This result follows that

2(1 −α)

(2 −α)A(α)
+

2α
(2 −α)A(α)

= 1.

The formula obtained from the earlier expression is as follows:

A(α) =
2

2 −α
, 0 < α < 1.

Definition 2.3 ([22]). Consider the Caputo-Fabrizio type fractional initial value problem given by

CFDα
t y(t) = f(t,y(t)), 0 < α ⩽ 1, y(0) = y0, (2.2)

where CFDα
t is a CFFD of order α, and f is a continuous function. The equivalent Volterra-type integral

form of the problem is formulated by

y(t) = y0 + (1 −α)

∫t
0
f(τ,y(τ))dτ+α

∫t
0

exp
(
−

α

1 −α
(t− τ)

)
f(τ,y(τ))dτ.

We define the Picard operator T on a suitable Banach space C[0, T ] as

(Ty)(t) = y0 + (1 −α)

∫t
0
f(τ,y(τ))dτ+α

∫t
0

exp
(
−

α

1 −α
(t− τ)

)
f(τ,y(τ))dτ.

A function y ∈ C[0, T ] is a solution of the Caputo-Fabrizio initial value problem (2.2) if and only if it is a
fixed point of T, i.e., Ty = y.

Lemma 2.4 ([26]). Let (X,d) be a complete metric space, and suppose the operator T : X → X satisfies the
contraction condition d(Tx,Ty) ⩽ kd(x,y), ∀x,y ∈ X, for some constant 0 < k < 1. Then T has a unique
fixed point x∗ ∈ X, and the sequence defined by the Picard iteration xn+1 = Txn converges to x∗. In the context
of fractional differential equations, if f(t,y) satisfies a Lipschitz condition in y, then the Picard operator T is a
contraction on C[0, T ], and hence, the Banach fixed point theorem guarantees the existence and uniqueness of the
solution.

Lemma 2.5 ([21]). Consider the system CFDα
t0x(t) = f(t, x), t > t0. Let x(t0) be the starting condition, with

0 < α ⩽ 1 and h : [t0,∞)×℧ → Rn,℧ ∈ Rn. On [t0,∞)×℧, the system has a unique solution if f(t, x) admits
the local Lipschitz criteria with respect to x.
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3. Mathematical model

We consider a system of three nonlinear differential equations with state variables: the density of
tumor populations, the density of hunting CTLs, and the density of resting CTLs in a single tumor-
site compartment at any given time t. With fractional-order derivatives, our model is an adaptation
of the original model by Kaur and Ahmad [17]. The immune system’s response is viewed by most
mathematical models of the tumor-immune system as a single population of cells known as effector
cells [7, 14, 20, 30], which are in charge of eradicating malignant cells. The dynamics of the immune
system can be made more straightforward by this simplifying basis. The immune system kills tumor
cells in two stages: hunting CTLs and resting CTLs. Tumor cells cannot be destroyed by resting CTLs,
but they can be killed by hunting cells. Tumor cells are recognized and eliminated by the host’s cellular
immune system because of specific antigens they release on their surface. The cellular response of the
immune system is executed by T cells. Antigen fragments on the surface of tumor cells are detected by
specialized antibody-like receptors on the surface of developing T lymphocytes. Cell membrane proteins
called Major Histocompatibility Complex (MHC) molecules bind antigens, which are the only antigens
that T cells can recognize in most circumstances. The ability of resting T lymphocytes to distinguish
between self and nonself is based on their recognition of the protein-based MHC molecule. Resting T
lymphocytes can engulf tumor cells and release a range of growth factors called cytokines, but they are
not able to eradicate the tumor cells. The cytotoxic T cells, also referred to as hunting cells, are triggered
by chemical messenger switches called cytokines. In contrast to latent T cells, cytotoxic T lymphocytes
usually release a high quantity of cytokines, along with lysergic causing damage to the target tumor
cell. Taking into account the previously stated biological mechanism, we altered a mathematical model of
immune response-related tumor formation. The following hypotheses are made by the model.

• In the absence of hunting CTLs, tumour cell growth is logistic.

• According to the law of mass action, the rate of elimination of tumor and hunting CTLs is propor-
tional to their relative densities.

• The transition from resting to hunting cells occurs when the hunting cells directly contact the resting
cells or when they come into contact with a chemical that spreads quickly (cytokines).

• In the absence of tumour cells, resting cells similarly follow logistic growth.

• The existence of tumor cells activates the resting cells, and this effect is mediated by the function of
Michaelis-Menten.

Let X(t) represent the concentration of tumor cells in the given physiological space at time t, Y(t) represent
the concentration of hunting CTLs, and Z(t) represent the concentration of resting CTLs. The model
governing the interaction between X(t), Y(t), Z(t) is represented by the set of equations below:

dX

dτ
= a1X

(
1 −

X

a2

)
− a3XY,

dY

dτ
= a4YZ− a5Y − a6XY,

dZ

dτ
= a7Z

(
1 −

Z

a8

)
− a9YZ− a10Z+

a11XZ

X+ a12
,

(3.1)

where the intrinsic growth rate and carrying capacity of tumor cells are denoted, respectively, by a1 and
a2. a3 represents the rate at which hunting cells destroy tumor cells, and a6 represents the rate at which
tumor cells inactivate hunting CTLs. a4 represents the rate at which resting CTLs become hunting cells.
a5 and a10 indicate the rates of apoptosis of hunting and resting cells, respectively. The resting CTLs
intrinsic growth rate is a7, and its carrying capacity is a8. The rate at which a resting CTL makes contact
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with a hunting cell is denoted by a9. a11 represents the resting CTLs poliferation rate, and a12 represents
the steepness coefficient. To reduce the number of parameters in the system, we consider the following
non-dimensional variables X = a2x, Y = a2y, Z = a8z, τ = t

a2a3
, and η1 = a1

a2a3
, β1 = a4a8

a2a3
, γ1 = a5

a2a3
,

ρ = a6
a3

, η2 = a7
a2a3

, β2 = a9
a3

, γ2 = a10
a2a3

, ν = a11
a2a3

, δ = a12
a2

. Then, we obatined the modified form of the
system (3.1) as follows:

dx

dt
= η1x(1 − x) − xy,

dy

dt
= β1yz− γ1y− ρxy,

dz

dt
= η2z(1 − z) −β2yz− γ2z+

νxz

x+ δ
. (3.2)

3.1. Mathematical model with the Caputo-Fabrizio fractional derivative
A unique formulation of the fractional derivative with a non-singular kernel was developed by Caputo

and Fabrizio [6]. Unlike classical derivatives that focus only on the local rate of change, the Caputo-
Fabrizio derivative incorporates a non-local memory kernel. This kernel weights the entire past history
of the system without introducing singularities. The motivation behind interest in this novel technique
is that it allows for describing the processes, where the current state depends on the cumulative effects
of past events. The kernel in the Caputo-Fabrizio derivative uses an exponential decay function, which
ensures a smooth transition of memory effects. This reflects physical systems where memory influence
diminishes over time in a controlled manner, rather than abruptly. The incorporation of the Caputo-
Fabrizio derivative to the tumor model can be justified in the present context.

1. Memory effects in immune response: The interactions between tumor cells, hunting cells, and
resting CTLs involve memory-dependent processes. For example:

• hunting cells and resting CTLs rely on immunological memory to recognize and target tumor
cells;

• tumor cells adapt and evolve based on past interactions with the immune system.

The Caputo-Fabrizio derivative integrates these memory effects through an exponential kernel, en-
abling the model to account for the influence of past dynamics on current behavior.

2. Non-singular kernel for biological realism: The Caputo-Fabrizio derivative’s non-singular expo-
nential kernel ensures that memory effects decay smoothly over time. This is biologically realistic
because:

• immune memory does not persist indefinitely but diminishes gradually as the immune system
resets or tumor cells evade recognition;

• cellular signaling has a time-limited influence on immune cell behavior.

3. Capturing non-local interactions

• tumor cells interact with hunting cells and resting CTLs through chemical signals, cell-to-cell
contact, and extracellular matrix modifications, all of which are inherently non-local;

• the Caputo-Fabrizio derivative allows for modeling these interactions over time and space,
accounting for how past and distant events affect current states.

4. Dynamic interplay between players

• Tumor Cells: Compete for resources, evade immune detection, and proliferate or die based on
their interactions with CTLs and hunting cells.

• Hunting Cells: Detect and attack tumor cells, influenced by their past exposure and the avail-
ability of signaling molecules.

• Resting CTLs: Destroy tumor cells via targeted attacks and depend on activation signals and
memory of previous encounters.

• The Caputo-Fabrizio derivative captures the dynamic feedback loops and time-dependent in-
teractions between these entities.
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The new form with the Caputo-Fabrizio fractional derivative can be obtained by transforming the integer-
order model provided in (3.2) as follows:

CFDαx(t) = η1x(1 − x) − xy,
CFDαy(t) = β1yz− γ1y− ρxy,
CFDαz(t) = η2z(1 − z) −β2yz− γ2z+

νxz

x+ δ
,

(3.3)

where α ∈ (0, 1] represents the fractional order and the positive initial conditions are x(t0) = x0, y(t0) =
y0, z(t0) = z0, where η1 represents the growth rate of tumor cells, representing the intrinsic ability of
tumor cells to proliferate, and η2 represents the growth rate of resting CTLs, capturing their replenishment
via intrinsic immune processes. The hunting cell inactivation rate by the tumor cell is ρ. β1 denotes the
activation rate of hunting CTLs from resting CTLs, describing how efficiently resting CTLs are converted
to active hunting CTLs. The death rate of hunting CTLs, indicating the average lifespan of active immune
cells, is denoted by γ1. The death rate of resting CTLs is denoted by γ2. β2 represents the deactivation
rate of resting CTLs from hunting CTLs, reflecting their direct effectiveness in suppressing tumor growth.
The resting CTLs propagation rate is denoted by ν in the form of the conversion rate of tumor cells into
resting CTLs. δ is the steepness coefficient.

4. Existence and uniqueness of the solution

In this section, we present the existence and uniqueness of the solution of the system (3.3).

Theorem 4.1. In the region Φ× [0, T ], where Φ = {(x,y, z) ∈ R3 : ||x|| < ξ1, ||y|| < ξ2, ||z|| < ξ3}, and T < +∞,
the system (3.3) has a solution and it is unique.

Proof. Let us consider L(t) = (x(t),y(t), z(t)), L̄(t) = (x̄(t), ȳ(t), z̄(t)), and a function

G(t,L) = (G1(t,L),G2(t,L),G3(t,L)),

where

G1(t,L) = η1x(1 − x) − xy, G2(t,L) = β1yz− γ1y− ρxy, G3(t,L) = η2z(1 − z) −β2yz− γ2z+
νxz

x+ δ
.

Here, G(t,L) is defined on Φ× [0, T ] and consider q = supL∈Φ ||G(t,L)||. We take the norm as ||L(t)|| =
supt∈[0,T ] |L(t)|. We will examine that some Ω > 0 exist, such that ||G(L) −G(L̄)|| ⩽ Ω||L− L̄||. Estimate

||G(L) −G(L̄)|| = ||η1x(1 − x) − xy− η1x̄(1 − x̄)

+ x̄ȳ+β1yz− γ1y− ρxy−β1ȳz̄+ γ1ȳ+ ρx̄ȳ

+ η2z(1 − z) −β2yz− γ2z+
νxz

x+ δ
− η2z̄(1 − z̄) +β2ȳz̄+ γ2z̄−

νx̄z̄

x̄+ δ
||

= ||η1((x− x̄) − (x2 − x̄2)) − (xy− x̄ȳ) +β1(yz− ȳz̄) − γ1(y− ȳ) − ρ(xy− x̄ȳ)

+ η2((z− z̄) − (z2 − z̄2)) −β2(yz− ȳz̄) − γ2(z− z̄) +

(
νxz

x+ δ
−

νx̄z̄

x̄+ δ

)
||

⩽ ||η1((x− x̄) − (x2 − x̄2)) − x(y− ȳ) − ȳ(x− x̄) +β1(y(z− z̄) + z̄(y− ȳ)) − γ1(y− ȳ)

− ρ(x(y− ȳ) + ȳ(x− x̄)) + η2((z− z̄) − (z2 − z̄2)) −β2(y(z− z̄) + z̄(y− ȳ))

− γ2(z− z̄) + ν

(
x(z− z̄)

δ(1 + x
δ )

+
z̄(x− x̄)

δ(1 + x
δ )(1 + x̄

δ )

)
||

⩽

(
η1(1 + 2ξ1) + ξ2(1 + ρ) +

νξ3

δ

)
||x− x̄||+ ((1 + ρ)ξ1 + ξ3(β1 +β2) + γ1) ||y− ȳ||
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+

(
νξ1

δ
+ ξ2(β1 +β2) + η2(1 + 2ξ3) + γ2

)
||z− z̄||.

This implies
||G(L) −G(L̄)|| ⩽ Ω1||x− x̄||+Ω2||y− ȳ||+Ω3|z− z̄||,

where

Ω1 = η1(1 + 2ξ1) + ξ2(1 + ρ) +
νξ3

δ
,

Ω2 = (1 + ρ)ξ1 + ξ3(β1 +β2) + γ1,

Ω3 =
νξ1

δ
+ ξ2(β1 +β2) + η2(1 + 2ξ3) + γ2.

Consider Ω = max{Ω1,Ω2,Ω3}. This yields that ||G(L) −G(L̄)|| ⩽ Ω||L− L̄||. By utilising the function G

and the αth-order fractional integral, a Picard’s operator Λ can be made. Consequently, the following
equation is obtained as

ΛL = CFIαG(t,L) + L(0). (4.1)

The next task is to demonstrate that this operator maps a complete non-empty metric space into itself and
that it is a contraction mapping. Consider ||L− L(0)|| ⩽ σ. Taking norm on (4.1), we get

||ΛL− L(0)|| ⩽ ||G(t,L)||CFIα(1) ⩽ q
2(1 −α(1 − T))

A(α)(2 −α)
< σ. (4.2)

The inequality in (4.2) is satisfied, if (1−α(1−T))
A(α)(2−α) < σ

2q . In this case, we obtain a condition under which the
operator Λ is a contraction. We give this constraint by following some steps as below:

||ΛL−ΛL̄|| = ||CFIα(G(t,L) −G(t, L̄))||

⩽ CFIα||G(t,L) −G(t, L̄)|| ⩽ ||G(t,L) −G(t, L̄)||CFIα(1) ⩽
2(1 −α(1 − T))

A(α)(2 −α)
Ω||L− L̄||.

The equation above indicates that the Picard’s operator Λ becomes a contraction when the relation

(1 −α(1 − T))

A(α)(2 −α)
⩽

1
2Ω

,

holds. This establishes the contractive nature of Picard’s operator Λ. The Banach fixed point theorem
states that the operator Λ has a unique fixed point, which means that the fractional transformed system
(3.3) has a unique solution. In this case, we have

(1 −α(1 − T))

A(α)(2 −α)
< min

{
σ

2q
,

1
2Ω

}
,

and the proof is complete.

5. Circuit implementation of the Simulink model in MATLAB

To establish a concrete bridge between theoretical modeling and experimental interpretation, the pro-
posed electronic circuit implementation acts as an analog simulation platform for the nonlinear dynamics
of tumor-immune interactions represented by the model (3.3). The suggested 3D chaotic model (3.3) of
integer order α = 1 is taken into consideration in order to design a circuit.
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Figure 1: Lab view of circuit in Simulink.

Three integrators are incorporated into the model to generate a Matlab-Simulink model for the system
of nonlinear equations (3.3):

x =

∫ (
1.89x(1 − x) − xy

)
dt,

y =

∫ (
0.239yz− 0.2y− 0.04xy

)
dt,

z =

∫ (
0.0691z(1 − z) − 0.5yz− 0.01z+

2xz
x+ 1

)
dt.

(5.1)

In this framework, the circuit voltages represent scaled versions of biologically significant variables: tumor
cell density (x), activated cytotoxic T lymphocytes (CTLs) (y), and resting CTLs (z). These voltages evolve
according to the nonlinear interactions encoded in the system of differential equations. For instance, a
rise in the voltage representing x reflects tumor proliferation, while changes in y and z correspond to
activation or suppression of immune responses. Such analog modeling enables rapid and continuous
simulation of tumor-immune dynamics under varying conditions, offering a potential tool for detailed
experimentation, biomedical education, and prototype testing of control strategies. This physical inter-
pretability enhances the practical relevance of the mathematical model and supports its application in
real-world scenarios. The Matlab-Simulink model (5.1) is schematically depicted in Figure 1. In addition
to interconnected amplification blocks, it has signal recording devices such as multiplication, integration,
summation, subtraction, and division. So, we have

ẋ = (1.89x(1 − x) − xy), ẏ = (0.239yz− 0.2y− 0.04xy), ż = (0.0691z(1 − z) − 0.5yz− 0.01z+
2xz
x+ 1

).
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Directly implementing model (3.3) with an electronic circuit presents an additional challenge. Equation
(3.3) provides a wide dynamic range of fluctuating variables with values that exceed suitable power
supply restrictions. Operational amplifiers’ operating voltage range in real electrical circuits is typically
between −15V and +15V . The parameter values are considered as η1 = 1.89, η2 = 0.0691, β1 = 0.239, β2 =
0.5γ1 = 0.2, γ2 = 0.01, v = 2, ρ = 0.04, δ = 1 [17] and the initial conditions are x(0) = 0.4,y(0) = 1, z(0) =
0.1. It is possible to see the outcomes of modeling the chaotic system (3.3) in MATLAB-Simulink and
LabVIEW by comparing the time graph in Figure 3 and Figures 5 (a). Figure 2 represents the 2D view
of the components’ relations generated in Matlab-Simulink and LabVIEW, which in turn resembles the
2D view displayed in Figure 4 generated from model (3.3) using the Adams-Bashforth method aided by
Mathematica.

   
 

Figure 2: x− y, y− z, x− z plane of cancer model circuit analysis in Simulink.

Figure 3: Circuit analysis time graph for model 7 in Simulink.
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Figure 4: 2D graphical representation of the system (3.3) for α = 1.
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6. Dynamics of the system (3.3)

The system (3.3) has five biologically viable equilibrium points. In this section, we shall analyze their
existence and stability conditions relying on some threshold parameters. The Jacobian matrix at any
arbitrary point, E(x,y, z) is computed in order to accomplish this:

J =

b11 b12 b13
b21 b22 b23
b31 b32 b33

 ,

where,

b11 = −y+ η1(1 − 2x), b12 = −x, b13 = 0,
b21 = −ρy, b22 = −ρx+β1z− γ1, b23 = β1y,

b31 =
νx

x+ δ
−

νxz

(x+ δ)2 , b32 = −β2z, b33 =
νx

x+ δ
−β2y− γ2 + η2(1 − 2z).

1. First boundary equilibrium point is E1(1, 0, 0) and it exists for any set of parameter values.
2. Another boundary equilibrium point is E2(0, 0, z2), where z2 = 1 − γ2

η2
= γ2

η2
(R0 − 1), and R0 = η2

γ2
. If

η2 > γ2, then R0 > 1 and it biologically holds, because proliferation of the resting cell is greater than
the natural decay of the resting cell. Hence, E2 is non-negative.

3. The tumor free equilibrium point is E3(0,y3, z3), where y3 = η2
β2

(
1 − R1

)
, z3 = γ1

β1
, and R1 = γ2

η2
+ γ1

β1
.

If R1 < 1, then E3 exists.
4. The equilibrium point E4(x4, 0, z4) represents a situation when there are no hunting cell. Here x4 = 1

and z4 = γ2
η2

(R2 − 1) , where R2 = η2
γ2

+ ν
γ2(1+δ) . If R2 > 1, then E4 exists.

5. The interior equilibrium point is E5 = (x5,y5, z5). Furthermore, we obtain a polynomial of degree
three by removing y and z from the system of equations (3.3), we get

Q1x
2 +Q2x+Q3 = 0, (6.1)

where

Q1 = β1β2η1 − ρη2,
Q2 = β1(ν+ η2 − γ2) +β1β2η1(δ1) − η2(γ1 + ρδ),
Q3 = −(δβ1(γ2 +β2η1) + δγ1η2).

Clearly Q3 is negative. Therefore, the system (6.1) has atleast one positive real root. Hence interior
equilibrium point E5 exists.

6.1. Stability

Theorem 6.1. Boundary equilibrium point E1 is a saddle point.

Proof. The eigen-values of the Jacobian matrix J of the system (3.3) at E1 are as follows:

λ11 = −(ρ+ γ1), λ12 = −η1, λ13 =
ν

1 + δ
+ γ2(R0 − 1).

λ11 and λ12 are real and negative. Since the growth rate of the resting cell is greater than the natural decay
of the resting cell, R0 > 1 is a biologically meaningful statement. Hence, λ11 > 0 and this leads E1 to be a
saddle point.

Theorem 6.2. The boundary equilibrium point E2 is always saddle.
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Proof. The eigen-values of the Jacobian matrix J of the system (3.3) at E2 are as follows:

λ21 = η1, λ22 = γ2(1 − R0), λ23 = −
β1γ2

η2
(1 − R0) + γ1.

Existence of E2 demands that R0 > 1. Clearly λ21 and λ23 are real and positive, and λ22 is real and negative
for any set of parameter values. Hence, E2 is always a saddle point.

Theorem 6.3. Let R̃1 = β1β2η1+γ1η2
β1γ2(R0−1) . The tumor free equilibrium point E3 is stable if R̃1 > 1 and R1 +

γ2
1

4β2
1
< 1.

Proof. The following values are the eigen-values of the Jacobian matrix J at E3 for the system (3.3):

λ31 =
β1γ2 +β1β2η1 −β1η2 + γ1η2

β1β2
=

γ2

β2
(R0 − 1)(1 − R̃1),

λ32 = −
γ1η2

2β1
−
√
η2γ1

√
(R1 − 1) +

γ2
1

4β2
1

,

λ33 = −
γ1η2

2β1
+
√
η2γ1

√
(R1 − 1) +

γ2
1

4β2
1

.

λ31 is negative, if R̃1 > 1. When R1 +
γ2

1
4β2

1
< 1, it indicates that the eigen-values λ32 and λ33 are complex

conjugate with negative real parts.

Theorem 6.4. Let R̃2 =
β1(ν+γ2(R0−1)(1+δ))

η2(1+δ)(ρ+γ2)
. The equilibrium point E4 is stable if R̃2 > 1.

Proof. The eigen-values of the Jacobian matrix J of the system (3.3) at E4 are as follows:

λ41 = −η1, λ42 = −

(
ν+ γ2(R0 − 1)(1 + δ)

1 + δ
+

)
, λ43 = (ρ+ γ2)(1 − R̃2).

Clearly, |arg(λ41)| = π > απ
2 and |arg(λ42)| = π > απ

2 . Hence E4 is stable if |arg(λ43)| >
απ

2 . The fundamen-
tal conditions for this is R̃2 > 1.

Theorem 6.5. If L1L2 − L3 > 0, then the co-existence equilibrium point E5 is locally stable.

Proof. The variational matrix corresponding to E5 is

J(x5,y5, z5) = (nij)3×3, i, j = 1, 2, 3, (6.2)

where,

n11 = −y5 + η1(1 − 2x5), n12 = −x5, n13 = 0,
n21 = −ρy5, n22 = −ρx5 +β1z5 − γ1, n23 = β1y5,

n31 =
νx5

x5 + δ
−

νx5z5

(x5 + δ)2 , n32 = −β2z5, n33 = −

(
β2y5 + γ2 + η2(2z5 − 1) −

νx5

x5 + δ

)
.

Thereafter the characteristic equation of equation (6.2) is

λ3 + L1λ
2 + L2λ+ L3 = 0, (6.3)

where,

L1 = −(n11 +n22 +n33),
L2 = n33(n11 +n22) − (n12n21 −n11n22) −n23n32,
L3 = n33(n12n21 −n11n22) +n23(n12n31 −n11n32),

L1L2 − L3 = n22(n21n22 +n23n31) + (n22 +n33)(n23n32 −n22n33 −n2
11) +n11(n12n21 − (n22 +n33)

2).

Thus, in the basis of the Routh-Hurwitz criteria, if n11 < 0, (n11 + n22) < 0, (n12n21 − n11n22) < 0, when
L1L2 − L3 > 0, the coefficients of equation (6.3) are strictly positive, meaning that the coexisting equilibria
E5 are locally stable.
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6.2. Threshold dynamics

In this work, we have defined four threshold parameters to analyze the dynamics of the equilibrium
points.

1. R0 = η2
γ2

. η2 denotes the growth rate of resting cell and 1
γ2

denotes the average life span of resting
cell. Their product quantifies the average number of resting cells maintained in the population
by the growth process over time. Therefore, R0 represents the basic reproduction number (BR) of
resting cells in the absence of tumor cells and hunting cells. For the existence of E2, this BR number
must be greater than 1.

2. The ratio γ2
η2

reflects the inverse contribution of resting CTLs to tumor suppression. A higher value
indicates that resting CTLs are less effective in controlling tumor cells, as their population is unable
to sustain itself due to a high death rate or low replenishment rate. Conversely, a lower value
suggests a more robust resting CTL population capable of exerting consistent pressure on tumor
cells. The ratio γ1

β1
captures the inverse effectiveness of hunting CTLs in tumor suppression. A

higher value indicates that hunting CTLs are less efficient at reducing tumor cells, either due to a
high death rate or a low tumor-killing rate. A lower value suggests that hunting CTLs are effectively
controlling tumor growth. A lower R1 indicates a stronger immune response, where resting and
hunting CTLs collectively exert significant pressure on tumor cells, leading to tumor suppression.
A higher R1 suggests reduced immune efficiency, where either resting or hunting CTLs (or both) are
unable to adequately control tumor growth due to high death rates or low functional efficiency.

3. Tumor-free equilibrium point. R1 quantifies the balance between the death and activation rates of
immune cells, as well as their capacity to sustain a robust immune response. If R1 < 1, the immune
system is well-balanced, with sufficient resting and hunting CTLs to counteract tumor dynamics.
Hence, it is justified that the existence of a tumor-free equilibrium point requires R1 < 1.

• The product β1β2η1 quantifies the tumor-induced immune response and reflects how tumor
growth influences the activation and effectiveness of hunting CTLs.

• The product γ1η2 reflects the baseline immune response from the growth of resting CTLs and
the natural turnover of hunting CTLs.

• The numerator β1β2η1 + γ1η2 quantifies the immune system’s ability to respond to tumor
growth, considering both activation β1, deactivation β2, and decay γ1.

• The product β1γ2 represents the interaction between activation and decay processes. β1γ2(R0 −
1) modulates this response by reflecting the sustainability of the resting CTL population, which
is the precursor for immune activation.

The term R̃1 integrates tumor growth, immune activation, and CTL decay dynamics to measure the
tumor-immune system’s overall state. It highlights the competing effects of tumor proliferation,
immune activation, deactivation, and decay. A high R̃1 indicates an effective immune response,
while a low R̃1 points to vulnerabilities in the immune system. Hence, R̃1 > 1 indicates that the

immune response is effective enough to counterattack the tumor cell. The term γ2
1

4β2
1

is derived from

the dynamics of hunting CTLs. A smaller γ2
1

4β2
1

implies that hunting CTLs are more effective because
their death rate is relatively low compared to their activation rate. It adds an additional layer of

stability. The inequality R1 +
γ2

1
4β2

1
< 1 indicates that the immune system is operating in a regime

where the balance between immune cell dynamics and tumor cell suppression is favorable.
4. R2 = η2

γ2
+ ν

γ2(1+δ) . ν represents the conversion rate of tumor cells to resting cells. 1
γ2(1+δ) represents

the adjusted average life span of resting cells, where the death rate is modulated by a factor related
to the steepness coefficient δ. When the expression is considered cumulatively as ν

γ2(1+δ) , it reflects
the aggregate behavior over time of how tumor cells transition into resting cells, considering the
competing dynamics of resting cell death and the modulation by the steepness coefficient. Again,
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η2
γ2

represents the average number of resting cells maintained in the population by the growth pro-
cess over time. Hence, in this context, R2 reflects the effective basic reproduction number of resting
CTLs in the presence of tumor cells, representing their overall ability to persist and respond under
the influence of both intrinsic and extrinsic factors. When R2 > 1, the immune system is better
equipped to maintain a stable resting CTL population, enhancing its capacity to combat tumor
growth. Conversely, lower values of R2 may indicate insufficient resting CTLs, potentially leading to
immune system destabilization and tumor progression. In the numerator of R̃2, the combined term
reflects the contribution of resting CTLs’ dynamics, particularly their loss and modulation, to the
immune system’s overall capacity to manage tumor growth. On the other hand, the denominator of
R̃2 represents the constraints on the immune system’s capacity, including how efficiently it replen-
ishes resting CTLs and their turnover dynamics. Cumulatively, R̃2 measures the balance between the
immune system’s ability to activate hunting CTLs, manage tumor conversion, and maintain resting
CTL dynamics relative to the limitations imposed by resting CTL growth and turnover. A higher R̃2
indicates a robust immune response, while a lower R̃2 signals a weakened capacity to handle tumor
growth. For the stability of the system at E4, the condition R̃2 > 1 is validated.

7. Results and discussion

In this section, extensive numerical simulations are carried out to investigate the dynamic behavior of
the proposed cancer model using the generalized predictor-corrector method [4, 8]. The model’s dynamics
are explored by employing parameter values: η1 = 1.89,β1 = 0.239,γ1 = 0.2, ρ = 0.04,η2 = 0.0691,β2 =
0.5,γ2 = 0.01,ν = 2, δ = 1 [17]. These simulations highlight the effects of varying the fractional-order
operator α on the system’s sub-populations, including tumor cells, resting CTLs, and hunting CTLs.
Graphs depicting the fluctuation of these sub-populations over time for varying fractional-order values α

are presented in Figures 5-15. These figures demonstrate how changes in α and other parameter values
influence the stability and oscillatory behavior of the tumor-immune system.

7.1. Influence of fractional order α

The system exhibits instability when the density of resting cells is high. However, as the density of
resting cells decreases, the system tends to stabilize under the influence of the fractional-order α. This
phenomenon, illustrated in Figure 5, reveals that lower values of α contribute to a gradual stabilization
of the system. Additionally, Figure 5 shows that the density of hunting cells increases as α decreases.
This increase in hunting cell density facilitates the system’s convergence toward stability. An essential ad-
vantage of fractional differential equations over their integer-order counterparts is their broader stability
range. This enhanced stability range is evident in the results, as shown in Figure 6. For decreasing values
of α, the system exhibits increased stability, indicating a pronounced memory effect. This memory effect
reflects the system’s reliance on its historical states, a characteristic feature of fractional-order systems.

7.2. Effect of tumor growth rate (η1)

Figures 7-9 investigate the impact of tumor cell growth rate (η1) on the system dynamics for fixed
values of α. For integer-order systems (α = 1), the model remains unstable across various tumor growth
rates. However, as α moves away from unity, the system transitions through stable limit cycles before
eventually converging to stability at α = 0.7. These results underline the critical role of fractional-order
α in moderating the effects of tumor growth rate and guiding the system toward stability. Biologically,
this implies that memory and history-dependent processes, captured mathematically by the fractional-
order derivative, can enhance the immune system’s ability to contain or eliminate tumor cells, even
under conditions of high proliferation. The stabilizing influence of lower α values may reflect biological
phenomena such as immune memory, delayed cellular responses, or accumulated immune adaptations,
which are absent in integer-order models.
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Figure 5: Time progressive trajectories of the system (3.3) for α = 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, and 0.25.
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Figure 6: Dyanmics of the system (3.3) for α = 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, and 0.25.
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Figure 7: Time series graph of the system (3.3) for η1 = 2, 2.5, and 3 with fixed α = 1.
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Figure 8: Time series graph of the system (3.3) for η1 = 2, 2.5, and 3 with fixed α = 0.9.
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Figure 9: Time series graph of the system (3.3) for η1 = 2, 2.5, and 3 with fixed α = 0.7.

7.3. Role of steepness coefficient (δ)
The steepness coefficient δ significantly influences the system dynamics, as depicted in Figures 10-12.

Increasing values of δ lead to higher tumor cell densities while reducing the densities of both resting and
hunting cells. Biologically, a higher δ reduces the efficiency of this conversion process, meaning that as
tumor burden increases, the immune system responds more weakly. This imbalance causes the system to
exhibit more oscillatory behavior in the integer-order case (α = 1). However, as α decreases, the number
of oscillations diminishes, and the system becomes progressively stable. These findings highlight δ’s
critical role in shaping the dynamics of the tumor-immune system and its interplay with fractional-order
effects.
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Figure 10: Time trajectories of the system (3.3) for various values of δ for fixed α = 1.
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Figure 11: Time trajectories of the system (3.3) for various values of δ for fixed α = 0.9.
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Figure 12: Time trajectories of the system (3.3) for various values of δ for fixed α = 0.7.

7.4. Impact of resting cell growth rate (η2)

Figures 13-15 explore the influence of resting cell growth rate (η2) on the system dynamics. For
η2 = 0.0491 and α = 1, the system exhibits instability with pronounced oscillations. This suggests that
when the immune system lacks a sufficient baseline generation of resting CTLs, it fails to maintain control
over tumor growth, resulting in fluctuating dynamics and persistent immune-tumor conflict. However,
as α takes on fractional values, the number of oscillations decreases, and the system stabilizes. Moreover,
higher growth rates of resting cells (η2) significantly impact the system’s stability. Increasing η2 shifts the
system dynamics toward stability, particularly when combined with lower fractional-order values. This
aligns with biological observations where immune memory and delayed responses can compensate for
limited immediate immune availability, providing more robust long-term regulation.
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Figure 13: Time versus tumor cells, hunting CTLs and resting CTLs for various values of η2 for fixed α = 1.

0 50 100 150 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

T
u
m
o
r
c
e
ll
s

(a)

0 50 100 150 200
0.0

0.5

1.0

1.5

Time

H
u
n
ti
n
g
C
T
L
s

(b)

η2 = 0.0491 η2 = 0.191 η2 = 0.513

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0

2.5

Time

R
e
st
in
g
C
T
L
s

(c)

Figure 14: Time versus tumor cells, hunting CTLs and resting CTLs for various values of η2 for fixed α = 0.7.
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Figure 15: Time versus tumor cells, hunting CTLs and resting CTLs for various values of η2 for fixed α = 0.5.

7.5. Key observations

The simulations clearly demonstrate that fractional-order α plays a vital role in stabilizing the tumor-
immune system. By reducing α from unity, the system transitions from instability to stability, reflecting
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the memory effect inherent in fractional differential equations. Additionally, the parameters η1, η2, and δ

have critical influences on the tumor-immune dynamics. The findings suggest that tuning these param-
eters, along with adjusting α, could provide valuable insights for modeling and potentially controlling
tumor progression. The numerical results, validated by theoretical analyses, underscore the significance of
fractional-order systems in capturing the complex dynamics of tumor-immune interactions. The broader
stability range and memory effects of fractional-order models offer an improved framework for studying
biological systems, with implications for cancer research and treatment strategies.

8. Conclusion

This paper employs the Caputo-Fabrizio fractional derivative to analyze the interaction between im-
mune system components, modeling tumor cells as prey and resting and hunting CTLs as predators. The
existence of a solution has been proven, the equilibrium points of the system identified, and their local
stability assessed using the Banach fixed-point theorem. To further understand the dynamics of the sys-
tem, mathematical analyses and parameter recalibration studies were conducted. In addition to numerical
simulations of the proposed model, which depict the population dynamics of the tumor-immune system
under varying fractional orders and estimated parameters using the generalized predictor-corrector ap-
proach of Adams type, this work integrates circuit implementations. By translating the theoretical model
into a circuit framework in MATLAB, the authenticity and computational precision of the model were
validated, offering a novel perspective for understanding the system’s behavior. The impact of various
factors on the growth and regression of tumor cells was examined through both numerical simulations
and circuit-based analyses. This comprehensive approach enhances the reliability of the findings and
provides valuable insights into the intricate dynamics of tumor progression and immune response mod-
ulation.
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