Novel fixed point theorems for orbital continuity in \(b\)-metric spaces: applications to integral equations and neural stability
Authors
G. M. Abd-Elhamed
- Department of Mathematics, Faculty of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
- College of Girls, Ain Shams University, Egypt.
Abstract
This article establishes novel fixed point theorems for \(\Psi \)-orbitally
continuous mappings in \(b\)-metric spaces, extending the foundational results.
The findings are applied to demonstrate the existence and uniqueness
solutions for nonlinear integral equations and analyzing the stability of
neural networks.
Share and Cite
ISRP Style
G. M. Abd-Elhamed, Novel fixed point theorems for orbital continuity in \(b\)-metric spaces: applications to integral equations and neural stability, Journal of Mathematics and Computer Science, 41 (2026), no. 1, 82--93
AMA Style
Abd-Elhamed G. M., Novel fixed point theorems for orbital continuity in \(b\)-metric spaces: applications to integral equations and neural stability. J Math Comput SCI-JM. (2026); 41(1):82--93
Chicago/Turabian Style
Abd-Elhamed, G. M.. "Novel fixed point theorems for orbital continuity in \(b\)-metric spaces: applications to integral equations and neural stability." Journal of Mathematics and Computer Science, 41, no. 1 (2026): 82--93
Keywords
- Orbitally continuous mappings
- nonlinear integral equations
- neural network
- \(b\)-metric spaces
MSC
References
-
[1]
G. M. Abd-Elhamed, Fixed point theorems for functions satisfying implicit relations in generalized b-metric spaces, Int. J. Math. Comput. Sci., 15 (2020), 1–10
-
[2]
G. M. Abd-Elhamed, Fixed point results for (β, α)-implicit contractions in two generalized b-metric spaces, J. Nonlinear Sci. Appl., 14 (2021), 39–47
-
[3]
G. M. Abd-Elhamed, A. A. Azzam, Fixed points in generalized alfa-beta-FG contractions in b-metric spaces, J. Interdiscip. Math., 28 (2025), 677–689
-
[4]
B. A. S. Alamri, R. P. Agarwal, A. Jamshaid, Some new fixed point theorems in b-metric spaces with application, Mathematics, 8 (2020), 11 pages
-
[5]
I. A. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal. Ulianowsk Gos. Fed. Inst., 30 (1989), 26–37
-
[6]
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181
-
[7]
L. C´ iric, A certain class of maps and fixed point theorems, Publ. Inst. Math. (Beograd) (N.S.), 20(34) (1976), 73–77
-
[8]
L. B. C´ iric´, Fixed points of weakly contraction mappings, Publ. Inst. Math. (Beograd) (N.S.), 20(34) (1976), 79–84
-
[9]
S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav., 1 (1993), 5–11
-
[10]
S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263–276
-
[11]
K. Fallahi, D. Savi´c, G. Rad, The existence theorem for Contractive mappings on wt-distance in b-metric Spaces endowed with a graph and its application, Sahand Commun. Math. Anal., 13 (2019), 1–15
-
[12]
E. Karapınar, Revisiting C´ iric´ type nonunique fixed point theorems via interpolation, Appl. Gen. Topol., 22 (2021), 483–496
-
[13]
H. K. Nashine, L. K. Dey, R. W. Ibrahim, S. Radenovi´c, Feng-Liu-type fixed point result in orbital b-metric spaces and application to fractal integral equation, Nonlinear Anal. Model. Control, 26 (2021), 522–533
-
[14]
H. K. Nashine, E. Karapınar, Fixed point results in orbitally complete partial metric spaces, Bull. Malays. Math. Sci. Soc. (2), 36 (2013), 1185–1193
-
[15]
C. P˘acurar, O. Popescu, Fixed points for three point generalized orbital triangular contractions, Mathematics, (2024), 13 pages
-
[16]
A. Panta, R. P. Panta, Orbital continuity and fixed points, Filomat, 31 (2017), 3495–3499
-
[17]
T. Rasham, M. S. Shabbir, M. Nazam, A. Musatafa, P. Park, Orbital b-metric spaces and related fixed point results on advanced Nashine-Wardowski-Feng-Liu type contractions with applications, J. Inequal. Appl., 2023 (2023), 16 pages
-
[18]
B. E. Rhoades, A Comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 266 (1977), 257–290
-
[19]
L. Tsegaye, Bahru, M. Abbas, Fixed point results of generalized Suzuki-Geraghty contractions on f-orbitally complete b-metric spaces, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 79 (2017), 113–124