J. Math. Computer Sci., 41 (2026), 82-93
Online: ISSN 2008-949X

Journal of Mathematics and Computer Science 3

AatiCs ang
o0 (@ o,
%

3\&'

yourna/ of
ouods ¥

Pusiicanons
Journal Homepage: www.isr-publications.com/jmcs

Novel fixed point theorems for orbital continuity in b-metric | &, check for upgates
spaces: applications to integral equations and neural stabil-

ity
Gehad M. Abd-Elhamed?P?

4Department of Mathematics, Faculty of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
bcollege of Girls, Ain Shams University, Egypt.

Abstract

This article establishes novel fixed point theorems for W-orbitally continuous mappings in b-metric spaces, extending the
foundational results. The findings are applied to demonstrate the existence and uniqueness solutions for nonlinear integral
equations and analyzing the stability of neural networks.
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1. Introduction

Fixed point theory is a cornerstone of nonlinear analysis and is applicable to differential equations,
optimization, and fractal theory. Recent advances have extended classical results to generalized spaces,
such as b-metric spaces presented by Bakhtin [5] and Czerwik [9], which relax the triangle inequality to
allow real-world complications.

Czerwik [10] constructed fixed point theory in b-metric space, demonstrating that Banach-type con-
tractions [6] hold if the coefficient A satisfies As < 1. Significant advancements in fixed-point theory
have resulted from the study of b-metric spaces, presenting novel ideas and extensions of the traditional
findings. Many researchers have found several fixed point results in b-metric spaces; see, e.g., ([1-4]).

A critical development in this domain involves W-orbitally continuous mapping, which generalizes
continuity requirements to sequences generated by iterative mappings. Orbital continuity, introduced by
Rhoades [18] and Ciri¢ [7, 8], requires that for any starting point s € f, if the orbit sequence {¥* ¢} con-
verges to a point z, then the sequence {W (W)} converges to Wz. Since this is weaker than requiring ¥ to
be continuous (i.e., if {5} converges to », then {Ws,} converges to W« for any convergent sequence {s}),
it enables fixed point results for mappings exhibiting irregular behavior. In mappings where standard
continuity fails, the idea of W-orbital continuity allows for fixed point the results by applying continuity
to the orbit of V.
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Nashine et al. [13] and Fallahi et al. [11] investigate fixed point results in b-metric spaces, with
the first focusing on orbitally lower semicontinuous functions and the second introducing wt-distance
and graph structures. Tsegaye [19] presented fixed point theorems for generalized «-Suzuki-Geraghty
type contractions in f-orbitally complete b-metric spaces. Nashine and Karapmar [14] extended these
concepts to partial metric spaces by introducing orbitally complete and orbitally continuous mappings.
All studies aim to generalize and improve existing fixed point theorems, with applications ranging from
fractal integral equations [13] to antenna energy reduction and solutions to integral equations [19]. In
addition to providing new methods for the analysis of contractive mappings and their applications, these
studies collectively contribute to fixed point theory in a variety of metric space generalizations; see, e.g.,
([12], [15-17]).

This article establishes novel fixed point theorems for W-orbitally continuous mappings in b-metric
spaces and discusses their important applications in nonlinear integral equations and neural network
stability analysis.

We review the fundamental concepts and our results in the following.

Definition 1.1. Let / be a non empty set. A function p : F x f — R" is called a b-metric space if there
exists a constant s > 1 such that for all s, 0, 553 € [, the following conditions are holds:

i. p(se1,0) =0if and only if, 56 = s0;
ii. p(sa,m) = p(s,n);
iii. p(se1,253) < s [p(se1, 302) + p (522, 23)].

The pair (f, p) is then called a b-metric space with parameter s > 1.
As shown in the following examples, b-metric spaces do not satisfy the conditions of metric spaces.

Example 1.2. Define the metric p : R X R = RT by the formula p(s,30) =3 —0 [P, p > 1, 50,0 € R.
Thus (R, p) is a b-metric space with s = 2p— 1,

Example 1.3. Let p € (0,1), and F = IP(R) = {5c = {3ec} C R: Y 7 |s|P < oo} For »,w € F, set
1
p(3, w) = [ % Is¢« — wi|PI?. Then (F, p) is a b-metric space with s = 21/P.

Example 1.4. Let (f,]) be a metric space. For parameters 3 > 1, A > 0, and pu > 0, define p(s, w) =
A (5, w) 4+ uJ (s, w)P for all s, w € F. Then p is not a metric on /. However (F,p) is a b-metric space
with s = 2B~1. Indeed, for any v € f,

p(3¢, w) = AJ (5, ) + pJ (3¢, w)P J(3¢,0) + J (v, w)] + ul] (55,v) + J (v, w)IP
+J(v,

<Al
< AJ(G60) 4+ J(0, )] + 2Pl (56, 0)P + J (v, ) P]
< 25_1[p 2,0) + p(v, w)].

It is obvious that the distance function in a b-metric space does not have to be continuous, and open
balls in these areas do not necessarily have to be open sets.

Lemma 1.5. Let (f,p) be a b-metric space with s > 1, and assume that {>} and {y} are convergent to » and y,
respectively. Then we get

1 .. . 2
S—zp(%,y) < Klgrgolnfp(%K,yK) < Klgrgosup P(s¢,yx) < s°p(57,y).

And also, if »x =y, then li_r>n p(s,yx) = 0. Furthermore, for every c € |, hence

1
—p(3,¢) < lim inf p(s,c) < lim sup p(s,c) < sp(s, ).
S K—00 K—00
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Definition 1.6. Let {>} = {s¢« : K € N} be a sequence in a b-metric space (f, p).

i. A sequence {5} converges in [ if there exists s € [ such that lim p(s¢, ) = 0.
K—00
ii. A sequence {} is a Cauchy sequence in [ if for every ¢ > 0, there exists kg € N such that:
P2, ) < g, VK, 1> K.
iii. The space [ is called complete if every Cauchy sequence in | converges in | .

Orbital continuity refines continuity by focusing on sequences generated by iterative mappings.
Definition 1.7. Let ¥ : /' — F be a mapping of a b-metric space / into itself. ¥ is said to be orbitally
continuous if lim W*is = w implies that, lim YW i;r = Yw and that F is said to be W-orbitally complete

i— o0 1—00
if every Cauchy sequence of the form {W*is}° ; converges in F .
2. Main results

Now we are discussing our main result

Theorem 2.1. Let (F, p) be a b-metric space with parameter s > 1, and let ¥ : F — [ be a self~-mapping satisfying
the following: for each € > 0, there exists 6(e) > 0 such that

1
sraloloa, W) + P(%2,W%1)} cetsle) @)

¢ < max {P(%L 20), p(221, Warr), p(o02, Wira)

implies p(Wse1, Vsry) < €. Then, for each » € F, the sequence {W«} is Cauchy. Furthermore, if | is W-orbitally
complete and satisfies either

! [p(%l,w%mp(%z,wl)} 22)

p(Wrr1, ¥srn) < max {P(%L ), alp(s01, Worr) + p(s02, WVirn)], 5

for some o € (0,1), or W is orbitally continuous, then ¥ has a unique fixed point w € F, lm W<3x = w for all
K——00
xeF.

Proof. Given s € [, define s = W1, assume that:

1

max {p(%Klqu%Kl)/ p(%Kfll\y%Kfl)l p(W%Kflllyz%Kfl)l ?

0t V1) + p(w%“,w%“n} -0
implies

1
p(W%K—llqu%K—l) < max {p(%K—LW%K—l)/ p(\y%K—quJz%K—l)r 282p(%K—1/\P2%K—1)} ’

if max {p(sec_1, Wsee_1), p(Wot—1, ¥23ec 1), 5020 (31, W2oe 1)} = p(Wore—1, ¥?3¢c_1), due to contradic-
tion, we have p(Wsre_1, Y23_1) < p(Wrr_1, V25¢_1). It follows that

1
p(W%K—lz\yz%K—l) < max {p(%K—llw}fK—l)/ ZSZP(%K—LWZ%K—H} .
Suppose that p(sec_1, Wsec—1) < 5550 (56c—1, 230 _1), we get p(Wie_1, W2re 1) < 50500301, W56 _1),

1 1
p(see1, Vo 1) +p(Wore 1, W25 1) < Sizp(%KfllWZ%Kfl) < gp(%K71/1y2%K71)/

S[p(%K—ll\y%K—l) + p(q]%K—ll\yz%K—l)] < p(%K—ll‘yzzK—l)/



G. M. Abd-Elhamed, J. Math. Computer Sci., 41 (2026), 82-93 85

which is a contradiction with the s-triangle inequality, then
p(ly%Kflrlyz%Kfl) < psee—1,¥ree 1) (2.3)

for each k =1,2,3,.... Then {p(s, s«4+1)} non increasing and bound below and hence has a limit & > 0.
Assume that & > 0. Then §(&) > 0 and for some t, p(W* 13, W's) < &+ (). Then by (2.1) and (2.3), it im-
plies, p(WW' 13, WW's) = p(W'se, W' 1s) < &, which is a contradiction; therefore, KliHrnoop(%K,l,ll’%K,l) =
0. Now, we are proving it () is a Cauchy sequence in /. Assume that (s,) is not Cauchy; then there
exist ¢ > 0 and the subsequences (s,) and (sm,) of (5) with ki > my > i such that p(sc,, sem,) = ¢,
and «; is the least number. We obtain p(s, ,,#m,) < €. By using the s-triangular inequality,

£ < p(%Ki/ %mi) < S[p(%Ki/ %mi+1) + p(%mi+1/ %m‘l)]l g hm Sup p(%Ki/ %TTL‘1+1)' (24)

» | m

Also, limsup p(s; ,,#m,) < ¢, and by (2.1),

1

, @[p(%lfll’%z) + p(ﬂz,‘l’%l)} >0,

max {p(%L 1), (521, War1), p(o02, Wir)

imply

1

p(\y%l/\y%Z) < max {p(%]/ %2)/ p(zlrly%l)/ p(%2/\y%2)/ E

[p(1, Wsey) + P(%zl‘i’%ﬂ} ,

p(%Ki/ %miH ) = p(‘y%Ki,lz‘y%mi)
1

’ E[p(}fki,y\y%mi) + p(%mi/\y%Ki,1 )]}

< max {p(%Kiy %mi)/ p(%Ki,V\y%Ki—l)/ p(%mi/\y%mi)

1

< max {p(%Kilr %‘mi )/ p(%Ki,y %Ki )/ p(%mi/ %‘m.pr] )/ @ [p(%Kifll %mi+1) + p(%mi/ %Ki )]} 7
using the s-triangle inequality,

p(%Ki_]l%mH_]) < S[Q(%Ki_y%m) + p(%Ki/%m'H_] )]/ p(%m-l/ %Ki) < S[Q(%miz%nq_l) + p(%Ki_w%Ki)]/

we get
1
p(%Ki/ %mi_,_l) < 2752 [S[p(%Ki_ll %Ki) + p(%Ki/ %mi_H )] + S[p(%mi/ %Ki—l) + p(%Ki_ll %Ki )H
1
< ?S[zp(%Kl,lz %Ki) + p(%Ki/ %mi_+1) + p(%mi/ A )]/
1 1

- g} < Z[zp(%m,l/ %Ki) + p(%mir%K171 )]

p(%Ki/ %mpr] ) [1

Letting the upper limit as i — oo, [1— %]ilij& sup p(,, m,) < 55, then iliﬁngo sup p(rx,, miy) < 557 <
<, which is contradiction with (2.4), hence () is a Cauchy sequence in f . Since f is ¥ orbitally complete,
the Cauchy sequence (sr¢) = (V<) converges to some point w. Now, if ¥ is orbitally continuous, Yw =
lim W(W* ) = W<F1 = w, so w is a fixed point. If ¥ satisfies (2.2), then we need to show that w is a fixed
point for V¥,

plw,Yw) < slp(w, saci1) + plracir, Yw)l = s [p(w, saci1) + p (Wi, Yw)l,

using condition (2.2),

p(Wrey, Yev) < max {pm,w), o oo, W)+ plaw, Wao)], 51 [o(ose, Wev) + p(w,wm} .
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Letting the upper limit as k — oo, Max tends to max {O, ap(w,Yw), ;?p(w,‘yw)}, since o <

21? < % Thus

1

S and

lim p(Ws, Yw) < gp(w,Yw),

K—00

q = max{q, ﬁ} < %, plw,Yw) < p(w,Yw). Hence Yw = w.
To prove the uniqueness of the fixed point, suppose that there are two fixed points v, w. Then p(v, w) <
p(Wv,Yw), applying condition (2.1), we have ¢ = p(v, w), and thus

e < max {plv, ), p(v, ¥0), 0, Yw), 515

p(v,Yw) —|—p(w,‘1’v)]} <e+d(e) < max{s,O,%} =¢.
s

Therefore, p(Yv,Yw) < ¢. But p(Wv,Yw) = p(v, w) = ¢, which is a contradiction, hence ¢ must be 0, so
v = w. If we applied condition (2.2), we obtain

p(v,w) = p(Yv,Yw) < max {p(v,w),oc.O,;p(v,w)} = p(v, w),

which implies p(v, w) = 0. O

Example 2.2. Let / =1[0,1], and ¥ = %, p(¢1, %2) = |31 — 30|, 51, 3 € [ . Then ¥ have a unique fixed
point in /. Indeed, p(Wiq, ¥irr) = |3 — 3 2 _ 5 Lz — s = %p(%l,%z). For o = %(oc < % = %), we get

the condition (2.2) holds. For any s € [, ¥*(x) = (—) » converges to 0.

—(p-1)
Example 2.3. Let f = R, and Wi = 0, where 6 < 2 5 ,p >1,and p(s7,30) = |50 — 0|V , 30,0 € F,
be a b-metric with s = 2P~!. Then ¥ has a unique fixed point in f . Indeed, p(Wse1, ¥305) = [03e1 — 0302|P =
0P |31 — 507 = 0P p(5c1, 552). For 0P < 1 =27P~1) if weletp =2, 0 < % = 0.7, W = 0.7, satisfies

1
p(Wrr, Vi) = 0.49p(571, 352) < max {p(%l, 20), olp(s01, Vo) + p(s02, Yoo )], zfsz[p(%l,‘i’%z) + p(%z,‘i’%l)} .

For any s € F, W*(sr) = 0% converges to 0.

Theorem 2.4. Let (F, p) be a b-metric space with parameter s > 1, and let ¥ : | — [ be a self-mapping. Suppose
I is W-orbitally complete. If ¥ satisfies the conditions:

(221, War1)p(50p, Vi)
(221, 52)

o(Wory, Wrty) < Q max {p(m,%z), ,G(%L%2)9(%1,‘1’%2)9(%2,‘1’%1)} 25)

for all 31 # 35, where Q < % and o(s¢1, »2) is a non-negative real function satisfying o(sz, 2) < . Then

foreach sc € [, lim W< = w € F with Yw = w. Moreover, the fixed point is unique.
K——00

(%1 »0)
Proof. Let s € F . If Wi = 5, the result is trivial. Assume Wi # s. Applying (2.5):
p (55, W) p(Wse, W252)

p(2, W)
p(Wse, W?5¢) < Qmax {p(3, ¥s), p(¥s, ¥?5),0},

(Wi, W250) < Q max {p(%,‘i’%), , 0(%,‘¥%)p(%,‘1’2%)p(‘1’%,‘1’%)} ,

if p(Wsr, W25¢) > p(s, W), this would imply p(Ws, W23¢) < Qp(Ws, W25), which is impossible since Q <
%. Therefore p(Wse, W23c) < Qp(s,¥s). By induction, p(W*s, W5F1s) < Q"p(s, ¥s). To show {W*s} is
Cauchy, note that for > k,

(W 3, W'se) <s) Qlp(sg,War) < s
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Since Q < 1, Q% — 0, then {W*sx} is Cauchy. By W-orbitally completeness, ¥ — w € f. Orbitally

SI
continuity of ¥ gives Yw = lim Y"1 = w, proving w is a fixed point. For uniqueness, suppose v, w
K—00
1

are distinct fixed points. Applying (2.5) and 0(5¢1, 502) < 5557, then

p(v,w) =p(Wv,Yw) < Qmax{p(v,w),0,c(v, w)p(v, Yw)p(w,¥Yv)} = Qp(v, w).

That is a contradiction; hence, the fixed point is unique. O

3. Applications

3.1. Solving a Volterra integral equation
Theorem 3.1. Let f = C|0, 1] be the space of continuous functions on [0, 1], equipped with the b-metric:
p(v,w) = sup () —w(x), v,weF
»x€[0,1]

with coefficient s = 2. The Volterra integral equation is investigated:

»

b (52) :nJO k(s, T)p(Tt)dT + c(3¢), 52 € [0,1],

where k : [0,1] x [0,1] — R is continuous and bounded by [k(s, )| < B, c € C([0,1]), m| < \/%[3 Then there exists
a unique continuous solution ¢, € C[0,1].

Proof. Define the operator V:

e

(W) (52) =nj k(6 D)) AT+ ().

0
For ¢, ¢ € F, compute:
Yo — Yol < nf BJ l$(T) — @(t)[dT < Il Bsup |b(T) — @(T)].
0 T
Squaring both sides, we get
p(Wd, Wo) < > BZp(d, @).
Let o = Inl2 B2. Choose In| < \/%[3’ ensuring « € (O,%). For a given ¢ > 0, set d(¢) = %(& —1), if the
maximum in (2.1) satisfies:

¢ < max {p(d>, @), (P, YY), p(e, Vo), é[p(dx‘i’cp) + p(q),‘l’d))]} <e+d(e),

then

(¥, %) < ale +3(e)) < wle +5( ~1)) < e

Thus, condition (2.1) holds. C[0, 1] is complete under the supremum norm. Since the b-metric topology
corresponds to the uniform convergence topology, / is W-orbitally complete. Now we verify condition
(2.2), p(Yd, Yo) < ap(d, @), where a € (0, ). Since

xp(d, ) < max { 1, 0], alp () + bl ¥, £ oL, ¥e) + o0, 40

then condition (2.2) is satisfied. All conditions of Theorem 2.1 are satisfied. Therefore the sequence {W*¢}
is Cauchy for any ¢ € F. Hence ¥ has a unique fixed point ¢ € F and for all ¢ € F, l_i)m‘PKc[) = (. The
K o

tixed point ¢ satisfies:

»

L) = L k(6 0) () d + c(50),

which is the unique solution to the volterra equation under the condition | < f%[s O
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Example 3.2. Solve the Volterra integral equation:

1

d(2) = 2J:Td)(’t)d’t+1, » € [0,1].

Solution: Let / = C[0, 1] with p(v,w) = sup [v(sx)— w(%)l2 ,V,w € [ and s = 2. Define an operator:
»€[0,1]

Yo(sx) = ;Lx Td(t)dTt+ 1.

Now we compute p(Vd, Yeo):

22
4

[b(T) — (T,

mw
~:
e

sup [$(1) — (7)<

€[0,1]

ool < 5 | <lb(r) — o(rldr <
0

1]
1
pWQW@MQEMQ@)

Here « = % € (0,%), satisfying condition(2.2). For iterative solution, start with ¢g(») = 1. Compute
successive approximations as follows.
Iteration 1:

” 2
P1(32) = Wepo(52) = ;J 1= 41

Iteration 2:

1(* 72 T P
¢2(%)—W¢1(%)—2L (T narr1=2 %
Tteration 3: P ] s o
1(” o >
(%Ud—qbﬂ%%—zj (%+~—+1MT+1 Tt

Analytical solution: if ¢ (%) = %%d)(%), then ¢(s) = AeﬂT Using this, $(0) = 1, we find A = 1. Thus

%2 . . o [ . . . . . %2
¢ () = er. The Taylor expansion is satisfied by the iterative approximation solution of e :

e = 1+%+7#+%6+
32 ' 384

2
4

The sequence {¢p« ()} converges uniformly to ¢p(x) = e
unique fixed point.

verifying Theorem 2.1, which guarantees a

3.2. Solving nonlinear integral equations
Theorem 3.3. Let f = Cla, b] be the space of continuous functions on [a, b], equipped with the b-metric:

p(v,w) = sup () —w(x)P, forp>1,
»€[a,b]

with coefficient s = 2P~1. Consider the nonlinear integral equation:

b

o(52) =nj Al D)@ (%, b(1))dr, € [a,b],

a

where A : [a,b] x [a,b] — R is a continuous function and @ : [a,b] x R — R is continuous and Lipschitz in ¢.
Then there is a unique solution ¢ € Cla, b].
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Proof. Define the operator ¥ : f — [ by

b

(W) (52) =nj Al (T, b (1) dr.

a
Since @ is Lipschitz in ¢, there exists a constant L > 0 : |@(T, ) — @(T, ¢)| < L|d — ¢[. Then

b P
nJ Al D)@(T, b (1)) — @1, @(1))ldt

a

p(Wd,Yo) =sup

< P sup
e

a

b P
J IA(e, T)I LI (1) — (7] dT] < MPAIPLP (b —a)Pp(d, @),

1
where [|A|| = sup|A(s, T)|. To satisfy (2.5) with Q < %, choose 1 such that || < (W) P We
get g

Y ¥
o(w, ) < Qmax { ol o), PR ot 1o, wolo(o, 0
Y is orbitally continuous because A and @ are also continuous. By Theorem 2.4, ¥ has a unique fixed
point. O

Example 3.4. Solve the nonlinear integral equation:

1

d(2) =03 Jo (set+1) cos(Pp(t))dT, 2 €[0,1].

Solution: Let f = C[0,1] with p(v, w) = SUP,.c (01 [v(s) — w(%)IZ. Define
1
(W) () = O.BJ (et +1)cos(d(T))dT,
0
. 2
p(WYo,Yo) =sup 0.3J (et +1)[cos d(T) — cos @(T)]dT
» 0
1
< (037 supl| Gee 1) lo(e) — oo avP?
=0.09(d, ¢) sup(g +1)?
= (0.09)(1.5)%p(d, @)
p(d, Yd)p(o, Vo)

— 0.20250(¢, ) = Q max {p(¢,<p), ,o(¢,<p)p(¢,w)p(cp,%)},

p(d, @)

Q =0.2025 < %, then V¥ satisfies (2.5). A numerical solution can be obtained using the fixed point iteration
approach by choosing ¢g(»r) =1, as the initial function Picard iteration:

1

bni1(s¢) =03 L (st +1)cos(dn(T))dT.

Split [0,1] into N = 10 points: » = T« = g for k =0,1,2,...,9. Use the trapezoidal rule for integration.
For iteration results after 10 see Table 1.
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Table 1
N » b(2)
0 00 0462
1 0111 0.465
2 0222 0.469
3 0333 0473
4 0444 0477
5 0.556 0.481
6 0.667 0.485
7 0.778 0.489
8 0.889 0.493
9 1.0 0497

For constant solution ¢ = c:

1
c= O.3J ()t+1)cos(c) dt=0.3 cos(c)(g +1),
0

this cannot hold for all > unless ¢ = 0.48 (corresponding numerical results at »c = 1). Unique solution
exists by the fixed point Theorem 2.4 and numerical iteration converges to a near-linear function.

3.3. Stability analysis of neural networks

Theorem 3.5. Let f = R* be state space with b-metric p(s,v) = H%—vaj , for e, € RS, 1<p<2,s= 2%.
Consider a discrete-time recurrent neural network (RNN) model where the state vector »; 1 updates as:

i1 = Y(s) = A(Wie +b),

where A : R® — R* is a Lipschitz-continuous activation function with constant Ln, W € R* x R* is the weight
matrix satisfied W[, < ﬁ, and b € R* is the bias vector. Then there is a unique equilibrium state »* = W(s*),
ensures network stability.

2
Proof. To show that p(s,v) = H%—vHi , for »,v € R%,1 < p <2,s =27 is a b-metric on R¥, where

K v
22—l = <Z|%i—vi|p> :
i=1
It is easy to verify the two axioms of a b-metric. To show the third axiom, by the triangle inequality,
¢ —=v|l, < |l>e—z[l, +lz—v],, forall »,v,z € R".
Now, by the Cauchy-Schwarz inequality,
2 2 2 2 2
Pl v) = [ = vy, < [loe—zlly, +25e = 2], [z = v, + 2=l
2 2
<2 |l =2l + Iz il

2
<2 |:H%—ZH%, + Hz—vHﬂ =slp(s,z) +p(z,v)],1 <p < 2.
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Then (/, p) b-metric space with s = 2%, 1<p <2 DefineV¥:fF — F by ¥(s) = A(Wx+b). Then

p(Wse, Wo) = [|A(Wse+b) — A(Wv +b) |3

<L W(—v)|3
<

2 2 .
L [WIR 15—l (3.1)

p(%,\y%)p(v,‘l’v)’ G(%,v)p(%,‘lfv)p(v,‘f’%)} :

(s, v)

= Qp(x,v) < Qmax{p(%,v),

where Q = L% ||W||fj < %, and R* with the b-metric is complete, W-orbitally complete, ¥ is continuous due
to the continuity of A, ensuring orbital continuity. By Theorem 2.4, the RNN has a unique equilibrium
state »* = W(sc*). Iterations »41 = ¥(5r) converge globally to »*, guaranteeing stable network dynamics
regardless of initial conditions. O

Example 3.6. Let f = R%(state space) with b-metric p(,v) = || —v|5 with coefficient s = 2. Define
Y[ — F by ¥Y(») = A(Wsx+b) = tanh(Wi< + b), satisfying Lipschitz-continuous with Ly =1, W =

04 0 _ | . CTo01 [ 05
[ 0 04 }, spectral norm [|W|[, = 0.4 < , and bias vector b = [ 01 } , ) = [ 05 ] Indeed,

for k =1, »1 = tanh(Ws 4 b) = tanh f)(fl ] = { 86%391937 ’
for k =2, 55 = tanh(W> 4 b) = tanh 8328? - 85283 ’
for k = 3, s3 = tanh(Wsr; + b) = tanh 8124513 - gggi ’
for k =4, »4 = tanh(Ws4 + b) = tanh gizgi - 812515; ’
for k =5, »5 = tanh(Ws4 + b) = tanh 8122; - 8}2575 '

The right-hand side of (3.1) becomes

p(%K/ %KJrl)p(%Kfl/ %K)
(s, 2c—1)

max{p(%m %Kfl)/ ’ “(%Kr %Kfl)p(%K/ %K)p(%Kfl/ %K)} = p(%Kl %Kfl)/

016p(%|<, J{K—l) > p(%K+1/ %K)/ K= 1/2/3/' s

Q =016 < % After 10 iterations, sg = [ 8125 ], and converges to unique fixed point (equilibrium
0.161
state) » = [ 0.161 }
Example 3.7. Let f = [0,1]3(state space) with b-metric p(s,v) = ||%—UH§ with coefficient s = 2, and
0.2 0.1 0.0
Y(sx) = A(Ws+Db) = tanh(Wie +b), satisfying Lipschitz-continuous with L, =1, W = | 0.1 02 0.1 |,
00 01 02
0.05
and bias vector b = | —0.05 |. Indeed, we verify spectral norm:
0.1

0.05 0.04 0.01
0.01 0.04 0.05

wiw = {0.04 0.06 0.04
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with eigen values A = 0.116,0.05,0.004, and spectral norm ||[W||, = vmaxA = v/0.116 = 0.34. Thus
Q =W =0.116 < 1. We verify condition (2.5):
p(¥s, Yv) = |[tanh(W 3 + b) — tanh(Wv + b)||§
< WE—v)l3
< [IW/3 [l —vll3
p(2¢, Wac)p(v, Yv)
ClEAY

= 0.116p(sr,v) < Q max {p(%,v), , G(%,v)p(%,‘i’v)p(v,‘y%)} ,

condition (2.5) holds for all s« # v in [, satisfying Theorem 2.4. This guarantees global convergence to a
unique fixed point w € F.

4. Conclusion

This article established novel fixed point theorems for W-orbitally continuous mappings in b-metric
spaces, extending the foundational results. The theorems were applied to prove the existence and unique-
ness solutions for nonlinear integral equations and to analyze the stability of neural networks, demonstrat-
ing their adaptability to solving complicated computational and mathematical problems. These theorems
can be extended to cone b-metric spaces, and neuro-inspired iterative algorithms can be developed as
avenues for future research.
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