Fixed point iterative algorithm with double inertial steps for solving data classification problems
Authors
P. Sunthrayuth
- Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), 39 Moo 1, Klong 6, Khlong Luang, Pathum Thani 12120, Thailand.
- AI-Powered Digital Platform Research Unit, Rajamangala University of Technology Thanyaburi (RMUTT), 39 Moo 1, Klong 6, Khlong Luang, Pathum Thani 12120, Thailand.
K. Muangchoo
- Faculty of Science and Technology, Rajamangala University of Technology Phra Nakhon (RMUTP), 1381, Pracharat 1 Road, Wongsawang, Bang Sue, Bangkok 10800, Thailand.
W. Nithiarayaphaks
- Faculty of Science and Technology, Rajamangala University of Technology Phra Nakhon (RMUTP), 1381, Pracharat 1 Road, Wongsawang, Bang Sue, Bangkok 10800, Thailand.
I Siramaneerat
- Department of Social Science, Faculty of Liberal Arts, Rajamangala University of Technology Thanyaburi (RMUTT), 39 Moo 1, Klong 6, Khlong Luang, Pathum Thani 12120, Thailand.
Abstract
The aim of this paper is to propose Krasnosel'skii-Mann type iteration with double inertial steps for approximating fixed points
of nonexpansive mappings in real Hilbert spaces. The weak convergence is proved under some suitable conditions of the parameters. Some applications to the problems of finding a common fixed point of a family of mappings are also given. Finally, several numerical experiments to show the efficiency and accuracy of our method in breast and cervical cancer diseases predictions are presented.
Share and Cite
ISRP Style
P. Sunthrayuth, K. Muangchoo, W. Nithiarayaphaks, I Siramaneerat, Fixed point iterative algorithm with double inertial steps for solving data classification problems, Journal of Mathematics and Computer Science, 41 (2026), no. 1, 58--81
AMA Style
Sunthrayuth P., Muangchoo K., Nithiarayaphaks W., Siramaneerat I, Fixed point iterative algorithm with double inertial steps for solving data classification problems. J Math Comput SCI-JM. (2026); 41(1):58--81
Chicago/Turabian Style
Sunthrayuth, P., Muangchoo, K., Nithiarayaphaks, W., Siramaneerat, I. "Fixed point iterative algorithm with double inertial steps for solving data classification problems." Journal of Mathematics and Computer Science, 41, no. 1 (2026): 58--81
Keywords
- Fixed point
- nonexpansive mapping
- Hilbert space
- weak convergence
- data classification problem
MSC
References
-
[1]
E. Altiparmak, I. Karahan, A new preconditioning algorithm for finding a zero of the sum of two monotone operators and its application to image restoration problems, Int. J. Comput. Math., 99 (2022), 2482–2498
-
[2]
F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 14 (2004), 773–782
-
[3]
F. Alvarez, H. Attouch, An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3–11
-
[4]
M. Amrane, S. Oukid, I. Gagaoua, T. Ensari, Breast cancer classification using machine learning, In: 2018 Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT), IEEE, (2018), 1–4
-
[5]
K. Aoyama, Y. Kimura, W. Takahashi, M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal., 67 (2007), 2350–2360
-
[6]
H. Attouch, P. É. Maingé, Asymptotic behavior of second-order dissipative evolution equations combining potential with non-potential effects, ESAIM Control Optim. Calc. Var., 17 (2011), 836–857
-
[7]
M. Azadpour, C. M. McKay, R. L. Smith, Estimating confidence intervals for information transfer analysis of confusion matrices, J. Acoust. Soc. Am., 135 (2014), EL140–EL146
-
[8]
J. Banasiak, L. Arlotti, Perturbations of positive semigroups with applications, Springer-Verlag, London (2006)
-
[9]
V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden (1976)
-
[10]
D. P. Bertsekas, S. Sra, S. Nowozin, S. J. Wright, Optimization for machine learning, In: chapter Incremental gradient, subgradient and proximal methods for convex optimization: a survey, MIT Press, London, (2012), 85–119
-
[11]
A. Cegielski, Iterative methods for fixed point problems in Hilbert spaces, Springer, Heidelberg (2012)
-
[12]
, Cervical Cancer Behavior Risk, UCI Machine Learning Repository, (2019)
-
[13]
P. Cholamjiak, S. Suantai, P. Sunthrayuth, An explicit parallel algorithm for solving variational inclusion problem and fixed point problem in Banach spaces, Banach J. Math. Anal., 14 (2020), 20–40
-
[14]
P. L. Combettes, V. R.Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), 1168–1200
-
[15]
R. Cominetti, J. A. Soto, J. Vaisman, On the rate of convergence of Krasnosel’skil-Mann iterations and their connection with sums of Bernoullis, Isr. J. Math., 199 (2014), 757–772
-
[16]
F. Deutsch, I. Yamada, Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings, Numer. Funct. Anal. Optim., 19 (1998), 33–56
-
[17]
A. Dixit, D. R. Sahu, P. Gautam, T. Som, J. C. Yao, An accelerated forward-backward splitting algorithm for solving inclusion problems with applications to regression and link prediction problems, J. Nonlinear Var. Anal., 5 (2021), 79–101
-
[18]
Q.-L. Dong, Y. J. Cho, T. M. Rassias, General inertial Mann algorithms and their convergence analysis for nonexpansive mappings, Springer, Cham, 134 (2018), 175–191
-
[19]
Q. L. Dong, J. Z. Huang, X. H. Li, Y. J. Cho, T. M. Rassias, MiKM: multi-step inertial Krasnosel’skii-Mann algorithm and its applications, J. Glob. Optim., 73 (2019), 801–824
-
[20]
N. El Harmouchi, K. Chaira, E. I. Marhrani, Common fixed points of monotone ρ-nonexpansive semigroup in modular spaces, Fixed Point Theory Appl., 2020 (2020), 24 pages
-
[21]
K.-J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Springer-Verlag, New York (2000)
-
[22]
S. Ghanem, R. Couturier, P. Gregori, An accurate and easy to interpret binary classifier based on association rules using implication intensity and majority vote, Mathematics, 9 (2021), 12 pages
-
[23]
K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Marcel Dekker, New York (1984)
-
[24]
G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications, Neurocomputing, 70 (2006), 489–501
-
[25]
O. S. Iyiola, C. D. Enyi, Y. Shehu, Reflected three-operator splitting method for monotone inclusion problem, Optim. Methods Softw., 37 (2022), 1527–1565
-
[26]
C. Izuchukwu, Y. Shehu, Inertial reflected Krasnosel’ski˘ı-Mann iteration with applications to monotone inclusion problems, Optimization, 74 (2025), 683–707
-
[27]
C. Izuchukwu, Y., Shehu, J.-C. Yao, Convergence results for proximal point algorithm with inertial and correction terms, Appl. Anal., 104 (2025), 1732–1752
-
[28]
C. Kanzow, Y. Shehu, Generalized Krasnoselskii–Mann-type iterations for nonexpansive mappings in Hilbert spaces, Comput. Optim. Appl., 67 (2017), 595–620
-
[29]
A. Khan, G. Rahmat, A. Zada, On uniform exponential stability and exact admissibility of discrete semigroups, Int. J. Differ. Equ., 2023 (2023), 4 pages
-
[30]
M. A. Krasnosel’skii, Two remarks on the method of successive approximations, Uspehi Mat. Nauk (N.S.), 10 (1955), 123–127
-
[31]
W. Li, A new iterative algorithm with errors for maximal monotone operators and its applications, In: 2005 International Conference on Machine Learning and Cybernetics, IEEE, 2 (2005), 969–975
-
[32]
Y. Li, Z. Chen, Performance evaluation of machine learning methods for breast cancer prediction, Appl. Comput. Math., 7 (2018), 212–216
-
[33]
P.-L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964–979
-
[34]
D. A. Lorenz, T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vis., 51 (2015), 311–325
-
[35]
P. E. Maingé, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., 219 (2008), 223–236
-
[36]
W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510
-
[37]
C. Marth, F. Landoni, S. Mahner, M. McCormack, A. Gonzalez-Martin, N. Colombo, on behalf of the ESMO Guidelines Committee, Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann. Oncol., 28 (2017), 14 pages
-
[38]
W. I. D. Mining, Data mining: concepts and techniques, Morgan Kaufmann, 10 (2006), 559–569
-
[39]
A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155 (2003), 447–454
-
[40]
K. Muangchoo, P. Sunthrayuth, A double inertial viscosity-type method for inclusion problems with fixed point constraints, Rend. Circ. Mat. Palermo (2), 74 (2025), 22 pages
-
[41]
Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597
-
[42]
B. T. Polyak, Some methods of speeding up the convergence of iterates methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17
-
[43]
S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67 (1979), 274–276
-
[44]
Y. Shehu, Convergence rate analysis of inertial Krasnoselskii-Mann type iteration with applications, Numer. Funct. Anal. Optim., 39 (2018), 1077–1091
-
[45]
Y. Shehu, O. S. Iyiola, F. U. Ogbuisi, Iterative method with inertial terms for nonexpansive mappings: applications to compressed sensing, Numer. Algorithms, 83 (2020), 1321–1347
-
[46]
T. Shimizu, W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl., 211 (1997), 71–83
-
[47]
F. Tarakci, I. A. Ozkan, Comparison of classification performance of kNN and WKNN algorithms, Selcuk Univ. J. Eng. Sci., 20 (2021), 32–37
-
[48]
P. Tseng, A modified forward-backward splitting method for maximal monotone mapping, SIAM J. Control Optim., 38 (2000), 431–446
-
[49]
Z.-b. Wang, Z.-y. Lei, X Long, Z.-y. Chen, A modified Tseng splitting method with double inertial steps for solving monotone inclusion problems, J. Sci. Comput., 96 (2023), 29 pages
-
[50]
K. Wang, Y. Wang, O. S. Iyiola, Y. Shehu, Double inertial projection method for variational inequalities with quasimonotonicity, Optimization, 73 (2024), 707–739
-
[51]
W. Wolberg, Breast Cancer Wisconsin (Original), UCI Machine Learning Repository, (1992)
-
[52]
H.-K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. (2), 66 (2002), 240–256
-
[53]
H. K. Xu, A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem, Inverse Probl., 22 (2006), 2021–2034
-
[54]
I. Yamada, N. Ogura, K. Sakaniwa, Quadratic optimization of fixed points of nonexpansive mappings in hubert space, Numer. Funct. Anal. Optim., 19 (1998), 165–190
-
[55]
Y. Yao, O. S. Iyiola, Y. Shehu, Subgradient extragradient method with double inertial steps for variational inequalities, J. Sci. Comput., 90 (2022), 29 pages
-
[56]
A. Zada, B. Zada, Hyers-Ulam stability and exponential dichotomy of discrete semigroup, Appl. Math. E-Notes, 19 (2019), 527–534
-
[57]
www.cancer.net, Cervical cancer: Statistics, Cancer.Net, (2020),
-
[58]
www.cancer.net, American Society of Clinical Oncology, Breast cancer survival rates, Cancer.Net, (2021),
-
[59]
www.cancer.org, American Cancer Society, Survival rates for cervical cancer, ACS, (2021),
-
[60]
www.cancer.gov, National Cancer Institute, Breast Cancer Risk Assessment Tool, NCI, (2021),
-
[61]
www.cdc.gov, Centers for Disease Control and Prevention, Breast cancer, CDC, (2021),
-
[62]
www.ncbi.nlm.nih.gov, Centers for Disease Control and Prevention, Human papillomavirus (HPV), CDC, (2021),
-
[63]
www.who.int, World Health Organization, Breast cancer: Prevention and control, WHO, (2020),