
J. Math. Computer Sci., 41 (2026), 58–81

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

Fixed point iterative algorithm with double inertial steps for
solving data classification problems

Pongsakorn Sunthrayutha,b, Kanikar Muangchooc,∗, Woraphak Nithiarayaphaksc, Issara Siramaneeratd

aDepartment of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology
Thanyaburi (RMUTT), 39 Moo 1, Klong 6, Khlong Luang, Pathum Thani 12120, Thailand.

bAI-Powered Digital Platform Research Unit, Rajamangala University of Technology Thanyaburi (RMUTT), 39 Moo 1, Klong 6, Khlong
Luang, Pathum Thani 12120, Thailand.

cFaculty of Science and Technology, Rajamangala University of Technology Phra Nakhon (RMUTP), 1381, Pracharat 1 Road,
Wongsawang, Bang Sue, Bangkok 10800, Thailand.

dDepartment of Social Science, Faculty of Liberal Arts, Rajamangala University of Technology Thanyaburi (RMUTT), 39 Moo 1, Klong 6,
Khlong Luang, Pathum Thani 12120, Thailand.

Abstract

The aim of this paper is to propose Krasnosel’skii-Mann type iteration with double inertial steps for approximating fixed
points of nonexpansive mappings in real Hilbert spaces. The weak convergence is proved under some suitable conditions of
the parameters. Some applications to the problems of finding a common fixed point of a family of mappings are also given.
Finally, several numerical experiments to show the efficiency and accuracy of our method in breast and cervical cancer diseases
predictions are presented.
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1. Introduction

Throughout this paper, let us assume that H is a real Hilbert space with the inner product ⟨·, ·⟩ and
the norm ∥ · ∥, respectively. Let T : H → H be a mapping. Recall that a mapping T : H → H is said to be
nonexpansive if

∥Tx− Ty∥ ⩽ ∥x− y∥, ∀x,y ∈ H.

Let T : H → H be a mapping. The fixed point problem (shortly, FPP) is to find a point x∗ ∈ H such that

x∗ = Tx∗. (1.1)
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From now on, we denote the fixed points set of T by F(T) := {x ∈ H : x = Tx}. It is well-known that nu-
merous problems in optimization theory, such as convex minimization problems, equilibrium problems,
variational inequalities, inclusion problems, and split feasibility problems, can be formulated as fixed-
point problems of a nonexpansive mapping or as the common fixed point of a family of nonexpansive
mappings (see, e.g., [11, 16, 45, 52–54] and references therein).

In recent years, various types of iterative method have been established for solving FPP of nonexpan-
sive mappings in Hilbert spaces by many authors. Next, we shall mention some known methods in the
literature for solving FPP (1.1), which motivate us to establish a new iterative method. The Krasnosel’skii-
Mann type iteration [30, 36] is one of the classical method for solving FPP in a real Hilbert space H. This
method is of the form: {

x1 ∈ H,
xn+1 = (1 −αn)xn +αnTxn, ∀n ⩾ 1,

(1.2)

where {αn} ⊂ (0, 1) and T is a nonexpansive mapping. It’s worth noting that the Krasnosel’skii-Mann
type iteration (1.2) was proved the weak convergence under various relaxed conditions on the parameter
{αn}. Moreover, the Krasnosel’skii-Mann type iteration has been further modified in various ways and has
been implemented to solve many types of optimization. By these reasons, the Krasnosel’skii-Mann type
iteration (1.2) has attracted a lot of attention from by many authors (see, e.g., [15, 18, 28, 41, 43, 44, 53]).

In order to speed up the convergence rate of the Krasnosel’skii-Mann type iteration (1.2), Maingé
[35] proposed an Inertial Krasnosel’skii-Mann type iteration for the fixed point problems of a nonexpansive
mapping T as follows: 

x0, x1 ∈ H,
yn = xn + θn(xn − xn−1),
xn+1 = (1 −αn)yn +αnTyn, ∀n ⩾ 1.

(1.3)

Here the term θn(xn−xn−1) is called the inertial term (or momentum term), which used to accelerate the rate
of convergence of the algorithms and θn is called the inertial parameter, which controls the contribution of
the inertial term (see [42]). He also proved the weak convergence theorem under the following conditions:
(C1) 0 < lim infn→∞ αn ⩽ lim supn→∞ αn < 1;
(C2) θn ∈ [0, θ) for some θ ∈ [0, 1);
(C3)

∑∞
n=1 θn∥xn − xn−1∥2 < ∞.

Note that the condition (C3) is extremely restrictive. This condition makes the algorithm difficult to
implement in practical applications, so it would be better to simplify the condition required for its im-
plementation. In this regard, Alvarez and Attouch [3] replaced the condition (C2) with the following
condition:

(C2∗) θn ∈ [0, θ) for some θ ∈ [0, 1/3) and {θn} is nondecreasing.

Then
∑∞

n=1 ∥xn − xn−1∥2 < ∞. In a particular case of the condition (C2∗), if the sequence {θn} is chosen
as a constant in [0, 1/3), then the condition (C3) is automatically satisfied. However, it is observed that
the inertial parameter θn of the condition (C2) can not be equal to 1. To overcome this limitation, Iyiola et
al. [25] proposed a modification of Inertial Krasnosel’skii-Mann type iteration (1.3) for which the inertial
parameter θn = 1. This method is called Reflected Krasnosel’skii-Mann type iteration and it is of the form:

x0, x1 ∈ H,
yn = 2xn − xn−1,
xn+1 = (1 −αn)xn +αnTyn, ∀n ⩾ 1,

(1.4)

where T : H → H is a nonexpansive mapping with F(T) ̸= ∅. The weak convergence result is proved under
the following condition:

0 < α ⩽ αn ⩽ αn+1 ⩽
1

2 + ϵ
, ϵ ∈ (0,∞).
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Very recently, Izuchukwu and Shehu [26] combined Inertial Krasnosel’skii-Mann type iteration (1.3) and
Reflected Krasnosel’skii-Mann type iteration (1.4), they proposed iterative algorithm, so-called Inertial
Reflected Krasnosel’skii-Mann type iteration. This method is of the form:

x0, x1 ∈ H,
zn = 2xn − xn−1,
yn = xn + θ(xn − xn−1),
xn+1 = (1 −αn)yn +αnTzn, ∀n ⩾ 1,

(1.5)

They proved the weak convergence theorem of Inertial Reflected Krasnosel’skii-Mann type iteration (1.5)
to a fixed point of T provided {αn} and θ satisfy the following conditions:

(C1’) 0 < α ⩽ αn ⩽ αn+1 ⩽ 1
1+ϵ , ϵ ∈ (2,∞);

(C2’) 0 ⩽ θ ⩽ ϵ−
√

2ϵ
ϵ , ϵ ∈ (2,∞).

However, the implementation of Inertial Reflected Krasnosel’skii-Mann type iteration (1.5) is limited due
to the inertial parameter θ being a fixed parameter.

It was discussed in [19] (see, also [18]) that algorithms with multi-step inertial extrapolation converge
significantly faster than those using a single inertial step. In recent years, numerous studies have shown
that methods with multi-step inertial extrapolation can significantly accelerate the convergence rate in
solving various types of optimization problems (see, e.g., [18, 40, 49, 50, 55]).

Motivated by the aforementioned research works, this paper proposes a double inertial Krasnosel’skii-
Mann type iteration involving two sequences of inertial parameters for approximating fixed points of
nonexpansive mappings in real Hilbert spaces. In the proposed method, one of the inertial parameters
is permitted to be equal to 1, while the other can be chosen arbitrarily close to 1. The weak convergence
of the proposed method to a fixed point of the mapping is established under appropriate conditions. We
further utilize our main result to solve the fixed point problems of a countable family of nonexpansive
mappings and nonexpansive semigroups. Also, the preconditioning algorithm with double inertial steps
is obtained from the main result for solving the monotone inclusion problem for the sum of the M-
cocoercive operator and monotone operator, where M is a linear bounded operator. Finally, we perform
several numerical experiments to illustrate the computational efficiency of our algorithm in solving fixed
point problems of a family of mappings and prediction problems of breast and cervical cancer diseases.

This paper is structured as follows. We recall some results and lemmas that will be used in the sequel
in Section 2. The rationale behind the algorithm proposed is discussed in Section 3. The main result of
this paper is given in Section 4. Applications of our main result are presented in Section 5 and, finally,
several numerical results are presented in Section 6.

2. Preliminaries

Throughout this paper, we use I to denote the identity mapping. Let H be a real Hilbert space with
the inner product ⟨·, ·⟩ and the norm ∥ · ∥. For each x,y ∈ H and α ∈ R, the following equalities hold:

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2⟨x,y⟩, (2.1)

∥x+ y∥2 = ∥x∥2 + 2⟨y, x+ y⟩,
and

∥αx+ (1 −α)y∥2 = α∥x∥2 + (1 −α)∥y∥2 −α(1 −α)∥x− y∥2. (2.2)

Let C be a nonempty, closed and convex subset of H. Then for each x ∈ H, there exists a unique nearest
point in C, denoted by PC(x), such that ∥x− PC(x)∥ ⩽ ∥x−y∥, for all y ∈ C. Such a PC is called the metric
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projection of H onto C. It is well-known that PC is a nonexpasive mapping. Moreover, PC is characterized
by the following properties: for each x ∈ H and y ∈ C,

⟨x− PC(x),y− PC(x)⟩ ⩽ 0 and ∥x− PC(x)∥2 + ∥y− PC(x)∥2 ⩽ ∥x− y∥2.

Lemma 2.1 ([2]). Let {φn}, {αn} and {βn} be three nonnegative real sequences such that

φn+1 ⩽ φn +αn(φn −φn−1) +βn, ∀n ⩾ 1,

with
∑∞

n=1 βn < ∞ and there exists a real number α such that 0 ⩽ αn ⩽ α < 1 for all n ∈ N. Then the following
results hold:

(i)
∑∞

n=1[φn −φn−1]+ < ∞, where [t]+ := max{t, 0};
(ii) there exists φ∗ ∈ [0,∞) such that limn→∞φn = φ∗.

Lemma 2.2 ([23]). Let C be nonempty, closed and convex of H and T : C → H be a nonexpansive mapping. Then
I− T is demiclosed at zero, that is, if {xn} is a sequence in H such that xn ⇀ x for some x ∈ H and xn − Txn → 0,
then x = Tx.

Lemma 2.3 ([41]). Let C be a nonempty subset of H. Let {xn} be a sequence in H such that the following two
conditions hold:

(i) limn→∞ ∥xn − x∥ exists for each x ∈ C;
(ii) every weak cluster point of {xn} is in C.

Then {xn} converges weakly to a point in C.

3. Motivation from dynamical systems

Following the works in [6, 26], we consider the following implicit second-order dynamical system for
the fixed point problems:

ẍ(t) +
(
γ(t) +α(t)(1 − γ(t))

)
ẋ(t) +α(t)x(t) = α(t)T

(
θ(t)ẋ(t) + x(t)

)
, (3.1)

where α,γ, θ : [0,∞) → [0,∞) are Lebesgue measurable functions and T is a mapping. Now, taking
step size hn > 0, set xn := x(tn) and αn := αn(tn), γn := γn(tn), θn := θ(tn), where tn :=

∑n
i=1 hi.

Moreover, set ẍ(t) ≈ xn−1−2xn+xn+1
h2 and ẋ(t) ≈ xn−xn−1

h in (3.1), we have

xn−1 − 2xn + xn+1

h2
n

+
(
γn +αn(1 − γn)

)(xn − xn−1

hn

)
+αnxn = αnT

(
θn

xn − xn−1

hn
+ xn

)
.

Now, we set hn = 1, then we have

xn−1 − 2xn + xn+1 + γn(xn − xn−1) +αn(1 − γn)(xn − xn−1) +αnxn = αnT(θn(xn − xn−1) + xn).

This implies that

xn+1 = xn + xn − xn−1 − γn(xn − xn−1) −αn(1 − γn)(xn − xn−1) −αnxn +αnT(xn + θn(xn − xn−1))

= (1 −αn)xn + (1 − γn)(xn − xn−1) −αn(1 − γn)(xn − xn−1) +αnT(xn + θn(xn − xn−1))

= (1 −αn)(xn + (1 − γn)(xn − xn−1)) +αnT(xn + θn(xn − xn−1)).
(3.2)

In this case, we take δn := 1 − γn. Then (3.2) can be reformulated as
zn = xn + θn(xn − xn−1),
yn = xn + δn(xn − xn−1),
xn+1 = (1 −αn)yn +αnTzn,

(3.3)
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where θn(xn − xn−1) and δn(xn − xn−1) are called inertial terms with inertial parameters θn and δn, re-
spectively. Note that such terms intended to accelerate the rate of convergence of the iterative algorithm.
We call (3.3) the Krasnosel’skii-Mann type with double inertial steps for the fixed point problems.

4. Main result

In this section, we introduce Krasnosel’skii-Mann type iteration with double inertial steps for solving
fixed point problem (FPP) and prove weak convergence theorem of the proposed algorithm in a real
Hilbert space. In the sequel, we state the following assumptions.

(A1) H is a real Hilbert space.
(A2) T : H → H is a nonexpansive mapping.
(A3) F(T) ̸= ∅.
(A4) The sequences {θn}, {δn}, {αn} satisfy the following conditions:

(i) 0 ⩽ θn ⩽ θn+1 ⩽ 1;
(ii) 0 ⩽ δn ⩽ δn+1 ⩽ δ < ϵ−

√
2ϵ

ϵ , ϵ ∈ (2,∞);
(iii) 0 < α ⩽ αn ⩽ αn+1 ⩽ 1

1+ϵ , ϵ ∈ (2,∞);
(iv) θn ⩾ δn for all n ⩾ 1.

Example 4.1. Let ϵ = 100. The sequences listed below satisfy assumption (A4):

θn = 1 −
1

4n + 17
, δn = 0.8 −

1
4n2 + 17

, and αn = 0.009 −
1

1000n+ 1
.

We now propose our algorithm as below.

Algorithm 4.2. For given x0, x1 ∈ H, let {xn} be a sequence generated by the following scheme:
zn = xn + θn(xn − xn−1),
yn = xn + δn(xn − xn−1),
xn+1 = (1 −αn)yn +αnTzn, ∀n ⩾ 1.

Remark 4.3.

(1) Note that our Algorithm 4.2 may seems like Algorithm (18) of [18] but its conditions (D1) and (D2)
which are imposed on the parameter sequences {θn}, {δn}, and {αn} of Algorithm (18) of [18] are very
rigorous which makes this algorithm not easy to implement in practical applications. However, these
conditions (D1) and (D2) are replaced by simpler assumptions in assumption (A4).

(2) If θn = 1 and δn = θ, then our Algorithm 4.2 reduces to Inertial Reflected Krasnosel’skii-Mann type
iteration proposed in [26, Algorithm (14)].

(3) If θn = 1 and δn = 0, then Algorithm 4.2 reduces to Reflected Krasnosel’skii-Mann type iteration
proposed in [25, Algorithm (11)].

(4) If θn = δn, then Algorithm 4.2 reduces to Inertial Krasnosel’skii-Mann type iteration proposed in [35,
Algorithm (1.2)].

(5) If θn = δn = 0, then Algorithm 4.2 reduces to Krasnosel’skii-Mann type iteration proposed in [30, 36].

Lemma 4.4. Assume that assumptions (A1)-(A3) are satisfied. Let {xn} be the sequence generated by Algorithm
4.2. Then for each p ∈ F(T), the following inequality holds for all n ⩾ 1,

∥xn+1 − p∥2 ⩽ (1 + an)∥xn − p∥2 − an∥xn−1 − p∥2 + bn∥xn − xn−1∥2 − cn∥xn+1 − xn∥2,

where

an : = (1 −αn)δn +αnθn,
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bn : = (1 −αn)δn(1 + δn) +αnθn(1 + θn) −
(1 −αn)(δ

2
n − δn)

αn
,

and

cn : =
(1 −αn)(1 − δn)

αn
.

Proof. Let p ∈ F(T). From (2.2), we see that

∥xn+1 − p∥2 = ∥(1 −αn)yn +αnTzn − p∥2

= ∥(1 −αn)(yn − p) +αn(Tzn − p)∥2

= (1 −αn)∥yn − p∥2 +αn∥Tzn − p∥2 −αn(1 −αn)∥yn − Tzn∥2

⩽ (1 −αn)∥yn − p∥2 +αn∥zn − p∥2 −αn(1 −αn)∥yn − Tzn∥2.

(4.1)

Since xn+1 = (1 −αn)yn +αnTzn, we have

Tzn − yn =
1
αn

(xn+1 − yn).

From (2.1) and the inequality 2⟨x,y⟩ ⩽ ∥x∥2 + ∥y∥2 for all x,y ∈ H, we get

∥Tzn − yn∥2 =
1
α2
n

∥xn+1 − yn∥2

=
1
α2
n

[
∥xn+1 − xn∥2 + δ2

n∥xn − xn−1∥2 − 2δn⟨xn+1 − xn, xn − xn−1⟩
]

⩾
1
α2
n

[
∥xn+1 − xn∥2 + δ2

n∥xn − xn−1∥2 − δn(∥xn+1 − xn∥2 + ∥xn − xn−1∥2)
]

=
1
α2
n

[
(1 − δn)∥xn+1 − xn∥2 + (δ2

n − δn)∥xn − xn−1∥2
]
.

(4.2)

Now, substituting (4.2) into (4.1), we get

∥xn+1 − p∥2 ⩽ (1 −αn)∥yn − p∥2 +αn∥zn − p∥2

−
1 −αn

αn

[
(1 − δn)∥xn+1 − xn∥2 + (δ2

n − δn)∥xn − xn−1∥2
]
.

(4.3)

From (2.2), we see that

∥yn − p∥2 = ∥xn + δn(xn − xn−1) − p∥2

= ∥(1 + δn)(xn − p) − δn(xn−1 − p)∥2

= (1 + δn)∥xn − p∥2 − δn∥xn−1 − p∥2 + δn(1 + δn)∥xn − xn−1∥2

(4.4)

and
∥zn − p∥2 = ∥xn + θn(xn − xn−1) − p∥2

= ∥(1 + θn)(xn − p) − θn(xn−1 − p)∥2

= (1 + θn)∥xn − p∥2 − θn∥xn−1 − p∥2 + θn(1 + θn)∥xn − xn−1∥2.

(4.5)
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Substituting (4.4) and (4.5) into (4.3), we get

∥xn+1 − p∥2

⩽ (1 −αn)
[
(1 + δn)∥xn − p∥2 − δn∥xn−1 − p∥2 + δn(1 + δn)∥xn − xn−1∥2

]
+αn

[
(1 + θn)∥xn − p∥2 − θn∥xn−1 − p∥2 + θn(1 + θn)∥xn − xn−1∥2

]
−

1 −αn

αn

[
(1 − δn)∥xn+1 − xn∥2 + (δ2

n − δn)∥xn − xn−1∥2
]

= (1 −αn)(1 + δn)∥xn − p∥2 − (1 −αn)δn∥xn−1 − p∥2 + (1 −αn)δn(1 + δn)∥xn − xn−1∥2

+αn(1 + θn)∥xn − p∥2 −αnθn∥xn−1 − p∥2 +αnθn(1 + θn)∥xn − xn−1∥2

−
(1 −αn)(1 − δn)

αn
∥xn+1 − xn∥2 −

(1 −αn)(δ
2
n − δn)

αn
∥xn − xn−1∥2

=
[
1 + (1 −αn)δn +αnθn

]
∥xn − p∥2 −

[
(1 −αn)δn +αnθn

]
∥xn−1 − p∥2

+
[
(1 −αn)δn(1 + δn) +αnθn(1 + θn) −

(1 −αn)(δ
2
n − δn)

αn

]
∥xn − xn−1∥2

−
(1 −αn)(1 − δn)

αn
∥xn+1 − xn∥2.

(4.6)

By the definitions of an, bn, and cn, then (4.6) can be written shortly as

∥xn+1 − p∥2 ⩽ (1 + an)∥xn − p∥2 − an∥xn−1 − p∥2 + bn∥xn − xn−1∥2 − cn∥xn+1 − xn∥2.

Theorem 4.5. Assume that assumptions (A1)-(A4) are satisfied. Let {xn} be the sequence generated by Algorithm
4.2. Then {xn} converges weakly to a fixed point of T .

Proof. From Lemma 4.4, we deduce that

∥xn+1 − p∥2 ⩽ ∥xn − p∥2 − an∥xn−1 − p∥2 + bn∥xn − xn−1∥2 + an∥xn − p∥2 − cn∥xn+1 − xn∥2.

Hence

∥xn+1 − p∥2 − an+1∥xn − p∥2 + bn+1∥xn+1 − xn∥2

⩽ ∥xn − p∥2 − an∥xn−1 − p∥2 + bn∥xn − xn−1∥2 + an∥xn − p∥2 − cn∥xn+1 − xn∥2

− an+1∥xn+1 − p∥2 + bn+1∥xn+1 − xn∥2.

Now, let
Θn := ∥xn − p∥2 − an∥xn−1 − p∥2 + bn∥xn − xn−1∥2, ∀n ⩾ 1.

Then by the definition of Θn, we have

Θn+1 ⩽ Θn − (an+1 − an)∥xn − p∥2 − (cn − bn+1)∥xn+1 − xn∥2. (4.7)

Since {θn}, {δn}, {αn} satisfy the assumption (A4), it follows from the definition of an that

an+1 − an = (1 −αn+1)δn+1 +αn+1θn+1 − (1 −αn)δn −αnθn

= (1 −αn+1)δn+1 − (1 −αn)δn +αn+1θn+1 −αnθn

⩾ (1 −αn+1)δn − (1 −αn)δn +αn+1θn −αnθn = (θn − δn)(αn+1 −αn) ⩾ 0.
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This together with (4.7) implies that

Θn+1 −Θn ⩽ −(cn − bn+1)∥xn+1 − xn∥2. (4.8)

By our assumption, we see that

cn − bn+1 =
(1 −αn)(1 − δn)

αn
− (1 −αn+1)δn+1(1 + δn+1)

−αn+1θn+1(1 + θn+1) +
(1 −αn+1)(δ

2
n+1 − δn+1)

αn+1

⩾
(1 −αn+1)(1 − δn+1)

αn+1
+

(1 −αn+1)(δ
2
n+1 − δn+1)

αn+1

− (1 −αn+1)δn+1(1 + δn+1) −αn+1θn+1(1 + θn+1)

⩾
(1 −αn+1

αn+1

)
(1 − 2δn+1 + δ2

n+1) − (1 −αn+1)δn+1(1 + δn+1) − 2αn+1

⩾
(1 −αn+1

αn+1

)
(1 − δn+1)

2 − 2(1 −αn+1) − 2αn+1 ⩾ ϵ(1 − δ)2 − 2 = ϵδ2 − 2ϵδ+ ϵ− 2.

(4.9)

Let σ := ϵδ2 − 2ϵδ+ ϵ− 2. Then from (4.8) and (4.9), we have

Θn+1 −Θn ⩽ −σ∥xn+1 − xn∥2. (4.10)

It is easy to see that σ > 0 if δ < ϵ−
√

2ϵ
ϵ with ϵ > 2. Consequently, {Θn} is nonincreasing. Clearly, it

follows from the definition of bn that 0 ⩽ bn ⩽ µ, where µ := (1 − α)
(

2 + δ
α

)
+ 2

1+ϵ . This implies that
{bn} is bounded. Then by the definitions of Θn and an, we have

∥xn − p∥2 = an∥xn−1 − p∥2 +Θn − bn∥xn − xn−1∥2

⩽ an∥xn−1 − p∥2 +Θn

⩽ an∥xn−1 − p∥2 +Θ1

⩽ τ∥xn−1 − p∥2 +Θ1

⩽ τ(τ∥xn−2 − p∥2 +Θ1) +Θ1

= τ2∥xn−2 − p∥2 + τΘ1 +Θ1

...

⩽ τn∥x0 − p∥2 + (1 + τ+ τ2 + . . . + τn−1)Θ1

⩽ τn∥x0 − p∥2 +
Θ1

1 − τ
,

(4.11)

where τ := (1 −α)δ+ 1
1+ϵ < 1. Again, since bn ⩾ 0 for all n ⩾ 1, we have

Θn+1 = ∥xn+1 − p∥2 − an+1∥xn − p∥2 + bn+1∥xn+1 − xn∥2 ⩾ −an+1∥xn − p∥2 ⩾ −τ∥xn − p∥2. (4.12)

It then follows from (4.10), (4.11), and (4.12) that

σ

k∑
n=1

∥xn+1 − xn∥2 ⩽
k∑

n=1

(Θn −Θn+1) = Θ1 −Θk+1 ⩽ Θ1 + τ∥xk − p∥2 ⩽ Θ1 + τk+1∥x0 − p∥2 +
τΘ1

1 − τ
.
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Thus ∞∑
n=1

∥xn+1 − xn∥2 ⩽
1
σ

lim
k→∞

(
Θ1 + τk+1∥x0 − p∥2 +

τΘ1

1 − τ

)
< ∞.

This implies that
lim
n→∞ ∥xn+1 − xn∥ = 0. (4.13)

From Lemma 4.4, we have

∥xn+1 − p∥2 ⩽ (1 + an)∥xn − p∥2 − an∥xn−1 − p∥2 + bn∥xn − xn−1∥2 − cn∥xn+1 − xn∥2

⩽ ∥xn − p∥2 + an(∥xn − p∥2 − ∥xn−1 − p∥2) + bn∥xn − xn−1∥2.

Now, we know that 0 ⩽ an ⩽ τ < 1 and
∑∞

n=1 bn∥xn+1 − xn∥2 < ∞, then by Lemma 2.1, we obtain
limn→∞ ∥xn − p∥2 exists. Also, from (4.13), we have

∥zn − xn∥ ⩽ θn∥xn − xn−1∥ ⩽ ∥xn − xn−1∥ → 0 (4.14)

and
∥yn − xn∥ ⩽ δn∥xn − xn−1∥ ⩽ δ∥xn − xn−1∥ → 0. (4.15)

Thus we have
∥xn+1 − yn∥ ⩽ ∥xn+1 − xn∥+ ∥xn − yn∥ → 0.

From the definition of xn+1, we see that

∥xn+1 − yn∥ = αn∥yn − Tzn∥ ⩾ α∥yn − Tzn∥.

Thus
lim
n→∞ ∥yn − Tzn∥ = 0. (4.16)

It then follows from (4.14), (4.15), and (4.16) that

∥zn − Tzn∥ ⩽ ∥zn − xn∥+ ∥xn − yn∥+ ∥yn − Tzn∥ → 0. (4.17)

Since limn→∞ ∥xn − p∥2 exists, we also have that {xn} is bounded. Then we can assume that there exists
a subsequence {xnk

} of {xn} such that xnk
⇀ q for some q ∈ H. Since limn→∞ ∥zn − xn∥ = 0, we also get

znk
⇀ q. This together with (4.17) and Lemma 2.2 yields that q ∈ F(T). In summary, we have shown that

the assumptions of Lemma 2.3 are hold. Therefore, we conclude that {xn} converges weakly to a point in
F(T). This completes the proof.

Also, the result of Theorem 4.5 still holds when T is a quasi-nonexpansive mapping (T is said to be
quasi-nonexpansive if F(T) ̸= ∅ and ∥Tx− p∥ ⩽ ∥x− p∥ for all x ∈ H and p ∈ F(T)). Then we obtain the
following result:

Theorem 4.6. Let T : H → H be a quasi-nonexpansive mapping such that F(T) ̸= ∅ and I− T is demiclosed at
zero. Then the sequence {xn} generated by Algorithm 4.2 converges weakly to a fixed point of T .

5. Some applications

In this section, we give some applications of our main result to fixed point problems of a family of
mappings and monotone inclusion problem for the sum of M-cocoercive operator and monotone operator,
where M is a linear bounded operator.
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5.1. Countable family of nonexpansive mappings
Let C be a subset of a real Hilbert space H. Let {Tn}

∞
n=1 be a sequence of nonexpansive mappings

of C into itself. In this case, we denote the common fixed point set of a sequence of such mappings by⋂∞
n=1 F(Tn) ̸= ∅. Then {Tn}

∞
n=1 satisfies the AKTT-property [5] if

∑∞
n=1 supx∈B ∥Tn+1x− Tnx∥ < ∞ for any

bounded subset B of C.
Next, we give a nice property for a family of mappings, which will be useful for proving the asymptotic

regularity property of T .

Lemma 5.1 ([5]). Let C be a nonempty, closed and convex subset of a real Hilbert space H. Let {Tn}
∞
n=1 be a

sequence of nonexpansive mappings from C into itself such that
⋂∞

n=1 F(Tn) ̸= ∅. Suppose that {Tn}∞n=1 satisfies
the AKTT-property. Then we can define a nonexpansive mapping T : C → C such that Tx := limn→∞ Tnx for all
x ∈ C and limn→∞ supx∈B ∥Tx− Tnx∥ = 0.

Next, we give some examples of a countable family of nonexpansive mappings which satisfy AKTT-
property.

Example 5.2. For each n ⩾ 1 and x ∈ R, let Tn : R → R be defined by

Tnx :=
(3

4
+

1
n+ 3

)
sin x, ∀x ∈ R.

It is easy to verify that {Tn}∞n=1 is a nonexpansive mapping on R with
⋂∞

n=1 F(Tn) = {0}. Moreover, {Tn}∞n=1
satisfies the AKTT-property. Indeed, for each bounded subset C of R and x ∈ C, we have

∞∑
n=1

sup
x∈C

|Tn+1x− Tnx| =

∞∑
n=1

( 1
n+ 3

−
1

n+ 4

)
sup
x∈C

| sin x| ⩽ lim
n→∞

n∑
k=1

( 1
k+ 3

−
1

k+ 4

)
< ∞.

In this case, we can define a nonexpansive mapping T : R → R by

Tx := lim
n→∞ Tnx =

3
4

sin x, ∀x ∈ R,

with F(T) =
⋂∞

n=1 F(Tn) = {0}.

From Theorem 4.5, we obtain the following result for a countable family of nonexpansive mappings.

Theorem 5.3. Let {Tn}∞n=1 be a countable family of nonexpansive mappings such that
⋂∞

n=1 F(Tn) ̸= ∅. For given
x0, x1 ∈ H, let {xn} be a sequence generated by the following scheme:

zn = xn + θn(xn − xn−1),
yn = xn + δn(xn − xn−1),
xn+1 = (1 −αn)yn +αnTnzn, ∀n ⩾ 1,

(5.1)

where {θn}, {δn}, and {αn} satisfy the assumption (A4). Suppose, in addition, that {Tn}∞n=1 satisfies the AKTT-
property. Let T : H → H be a mapping defined by Tx := limn→∞ Tnx for all x ∈ H with F(T) =

⋂∞
n=1 F(Tn).

Then the sequence {xn} generated by (5.1) converges weakly to a common fixed point of
⋂∞

n=1 F(Tn).

Proof. Almost all of the proof can follow from the method of proof in Theorem 4.5. Then we only prove
the demiclosedness of T . From Theorem 4.5, we know that {zn} is bounded. Now, from (4.17), we have

lim
n→∞ ∥zn − Tnzn∥ = 0. (5.2)

For each n ⩾ 1, we see that

∥zn − Tzn∥ ⩽ ∥zn − Tnzn∥+ ∥Tnzn − Tzn∥ ⩽ ∥zn − Tnzn∥+ sup
x∈{zn}

∥Tnx− Tx∥.
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From (5.2) and since {Tn}
∞
n=1 satisfies the AKTT-property, thus we get limn→∞ ∥zn − Tzn∥ = 0. Therefore,

in the same way as in the proof of Theorem 4.5, we can now complete the rest of the proof.

5.2. Semigroup of nonexpansive mappings

It is known that a semigroup of operators plays an important role in the study of continuous and
discrete dynamical systems (see [9, 21, 29, 56]).

First, we give some examples of semigroup operator which is the achievement of semigroup theory,
provide a powerful tool for solving differential equations. Consider the following initial value problem
(or abstract Cauchy problem): {

ẋ(t) = Ax(t), t ⩾ 0,
x(0) = x,

(5.3)

where A be an n× n matrix and x be an n-vector whose components are unknown function. Then (5.3)
has a unique solution of the form x(t) = etAx for t ⩾ 0, where etA is a matrix exponential defined by

etA :=

∞∑
k=0

tkAk

k!
.

Then a family {etA : t ⩾ 0} is a semigroup of matrices (see [8, 21]).
A one-parameter family Γ = {Tt : t ⩾ 0} of mappings of C into itself is said to be nonexpansive semigroup

if it satisfies the following conditions:

(S1) T0x = x for all x ∈ C;
(S2) Ts+t = TsTt for all s, t ⩾ 0;
(S3) for each x ∈ C, the mapping t 7→ Ttx is continuous;
(S4) for each t ⩾ 0, Tt is nonexpansive, that is, ∥Ttx− Tty∥ ⩽ ∥x− y∥ for all x,y ∈ C.

We denote the set of all common fixed points of Γ by

F(Γ) :=
⋂
t⩾0

F(Tt) = {x ∈ H : x = Ttx, t ⩾ 0}.

A continuous operator of semigroup {Tt : t ⩾ 0} is said to be uniformly asymptotically regular if for all s ⩾ 0
and any bounded subset C of H such that limt→∞ supx∈C ∥Ttx− TsTtx∥ = 0.

Next, we give some more examples of a semigroup of operators and matrices.

Example 5.4. This example is modified from [20, Example 3.20]. For each t ⩾ 0 and x = (x1, x2, x3, . . .) ∈ ℓ2,
let Tt : ℓ2 → ℓ2 be defined by

Ttx :=
(
e−tx1, e−2tx2, e−3tx3, . . .

)
, ∀x ∈ ℓ2.

It is easy to check that Γ := {Tt : t ⩾ 0} satisfies the Conditions (S1)-(S3). However, Γ is nonexpansive.
Indeed, for any x,y ∈ ℓ2, and using the fact that e−αt ⩽ 1 for α > 0, t ⩾ 0, we have

∥Ttx− Tty∥2
ℓ2

=
∥∥∥(e−t(x1 − y1), e−2t(x2 − y2), e−3t(x3 − y3), . . .

)∥∥∥2

ℓ2

= e−2t(x1 − y1)
2 + e−4t(x2 − y2)

2 + e−6t(x3 − y3)
2 + · · ·

⩽ (x1 − y1)
2 + (x2 − y2)

2 + (x3 − y3)
2 + · · · = ∥x− y∥2

ℓ2
,

which implies that ∥Ttx− Tty∥ℓ2 ⩽ ∥x− y∥ℓ2 , ∀x,y ∈ ℓ2. Then Γ is a nonexpansive semigroup on ℓ2 with
F(Γ) = {(0, 0, 0, . . .)}. Moreover, we can show that Γ is uniformly asymptotically regular.
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Example 5.5. For each t ⩾ 0 and x = (x1, x2, x3)
⊤ ∈ R3, let T ′

t : R3 → R3 be defined by

T ′
tx :=

1
β
e−βt

 1 0 0
0 cos(γt) sin(γt)
0 − sin(γt) cos(γt)

 x,

where β ⩾
√

3 and γ ∈ R. It can be checked that Γ ′ := {T ′
t : t ⩾ 0} satisfies the conditions (S1)-(S3) and Γ ′

is nonexpansive. For any x,y ∈ R3 and t ⩾ 0, we have

∥T ′
tx− T ′

ty∥ ⩽

√
3
β

e−βt∥x− y∥ ⩽ ∥x− y∥.

Then Γ ′ is a nonexpansive semigroup on R3 with F(Γ ′) = {(x1, 0, 0)⊤ : x1 ∈ R}. Moreover, we can show
that Γ ′ is uniformly asymptotically regular.

From Theorem 4.5, we obtain the following result for a nonexpasive semigroup.

Theorem 5.6. Let S := {Tt : t ⩾ 0} be a nonexpaisve semigorup such that F(S) ̸= ∅. For given x0, x1 ∈ H, let {xn}
be a sequence generated by the following scheme:

zn = xn + θn(xn − xn−1),
yn = xn + δn(xn − xn−1),
xn+1 = (1 −αn)yn +αnTtnzn, ∀n ⩾ 1,

(5.4)

where {θn}, {δn}, and {αn} satisfy the assumption (A4), and {tn} is a real sequence in (0,∞) such that limn→∞ tn =∞. Suppose, in addition, that S is uniformly asymptotically regular. Then the sequence {xn} generated by (5.4)
converges weakly to a common fixed point of S.

Proof. We only prove the demiclosedness of Tt for all t ⩾ 0. From Theorem 4.5, we note that {zn} is
bounded. From (4.17), we have

lim
n→∞ ∥zn − Ttnzn∥ = 0. (5.5)

Then for each t ⩾ 0, we have

∥zn − Ttzn∥ ⩽ ∥zn − Ttnzn∥+ ∥Ttnzn − TtTtnzn∥+ ∥TtTtnzn − Ttzn∥
⩽ 2∥zn − Ttnzn∥+ sup

x∈{zn}

∥Ttnx− TtTtnx∥.

From (5.5) and since S is uniformly asymptotically regular, we obtain

lim
n→∞ ∥zn − Ttzn∥ = 0, ∀t ⩾ 0.

This completes the proof.

Remark 5.7. As shown in [46, Lemma 2] that if Sτ is a nonexpansive semigorup, then the mapping
1
t

∫t
0 Sτxdτ for all x ∈ H and t > 0, is a uniformly asymptotically regular nonexpansive semigorup.

Therefore the result of Theorem 5.6 holds when Ttnx := 1
tn

∫tn
0 Sτxdτ for all x ∈ H.

5.3. Monotone inclusion problems

Consider the following monotone inclusion problem: find z ∈ H such that

0 ∈ (A+B)z, (5.6)
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where A : H → H and B : H → 2H are single and set-valued operators, respectively. We denote the solu-
tion set of (5.6) by (A+ B)−10. The monotone inclusion problem has many applications in a wide range
of science and engineering including image recovery, signal recovery, statistical regression and machine
learning (see, e.g., [10, 14, 31] and references therein). Moreover, this problem includes many mathe-
matical problems such as convex minimization problems, variational inequality problems, equilibrium
problem, split feasibility problem, linear inverse problems and saddle point problems as special cases
(see [1, 13, 48]).

It is known that the classical method to solve the monotone inclusion problem (5.6), when B is 1/L-
cocoercive, is the forward-backward splitting method [33] which is defined by the following iterative method:{

x1 ∈ H,
xn+1 = (I+ λnA)−1(xn − λnBxn), ∀n ⩾ 1,

(5.7)

where λn is a step size parameter. It was proved that the sequence generated by (5.7) converges weakly
to an element of (A+B)−10 provided λn ∈ (0, 2/L).

Using the concept of inertial technique in [42], Moudafi and Oliny [39] proposed an accelerated it-
erative method so-called inertial forward-backward splitting method. This method is a combination of the
inertial method and forward-backward splitting method (5.7). The scheme is as follows:

x0, x1 ∈ H,
yn = xn + θn(xn − xn−1),
xn+1 = (I+ λnA)−1(yn − λnBxn), ∀n ⩾ 1.

(5.8)

The weak convergence of the sequence generated by (5.8) is proved under θn ∈ [0, 1) is chosen such that∑∞
n=1 θn∥xn − xn−1∥2 < ∞ and λn < 2/L, where L is the Lipschitz constant of B.
In optimization theory, preconditioning techniques are often used to improve the convergence rate

and efficiency of optimization methods. In recent years, Lorenz and Pock [34] proposed a modification
of the inertial forward-backward splitting method so-called the preconditioning inertial forward-backward
algorithm to solve monotone inclusion problem (5.6). The scheme is as follows:

x0, x1 ∈ H,
yn = xn + θn(xn − xn−1),
xn+1 = (I+ λnM

−1A)−1(yn − λnM
−1Byn), ∀n ⩾ 1,

(5.9)

where M is linear bounded self-adjoint and positive definite operator. They also studied the weak conver-
gence analysis of the sequence generated by (5.9) under some certain conditions on the parameters. It is
noting that the preconditioning inertial forward-backward algorithm (5.9) is reduced to forward-backward
algorithm (5.7) when θn = 0 and M = I.

A bounded linear operator M : H → H is said to be self-adjoint if M∗ = M, where M∗ is the adjoint of
operator M. A self-adjoint operator is said to be positive-definite if ⟨Mx, x⟩ > 0 for all x ∈ H with x ̸= 0.
Let M be a self adjoint, positive and bounded linear operator, then we can define M-inner product by

⟨x,y⟩M := ⟨x,My⟩, ∀x,y ∈ H.

Also, we define the corresponding M-norm induced from the M-inner product by

∥x∥2
M := ⟨x,Mx⟩, ∀x ∈ H.

Let C be a nonempty subset of H, T : C → H be an operator and M : H → H be a positive-definite
operator. Then T is said to be nonexpansive with respect to M-norm if ∥Tx − Ty∥M ⩽ ∥x − y∥M for all
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x,y ∈ H and it is said to be M-cocoercive if ∥Tx− Ty∥2
M−1 ⩽ ⟨Tx− Ty, x− y⟩ for all x,y ∈ H.

Let M : H → H be a bounded, linear self-adjoint and positive-definite operator, A : H → 2H be a
maximal monotone operator, B : H → H be an M-cocoercive operator. If λ ∈ (0, 1], then (I+ λM−1A)−1

and I − λM−1B are nonexpansive operators with respect to M-norm (see [17]). Let λ ∈ (0, 1], we can
define a nonexpansive operator with respect to M-norm by

TA,B
λ,M := (I+ λM−1A)−1(I− λM−1B)

with F(TA,B
λ,M) = (A+B)−10. From Theorem 4.5, we obtain the following the convergent result for precon-

ditioning algorithm with double inertial steps.

Theorem 5.8. Let M : H → H be a bounded linear self-adjoint and positive-definite operator, A : H → 2H be
a maximal monotone operator, B : H → H be an M-cocoercive operator such that (A + B)−10 ̸= ∅. For given
x0, x1 ∈ H, let {xn} be a sequence generated by the following scheme:

zn = xn + θn(xn − xn−1),
yn = xn + δn(xn − xn−1),
xn+1 = (1 −αn)yn +αnT

A,B
λ,Mzn, ∀n ⩾ 1,

(5.10)

where {θn}, {δn}, and {αn} satisfy the assumption (A4), and λ ∈ (0, 1]. Then the sequence {xn} generated by (5.10)
converges weakly to a point of (A+B)−10.

6. Numerical experiments

In this section, we present several numerical experiments to show the performance and advantage
of our Algorithm 4.2 (Double Inertial Krasnosel’skii-Mann type iteration) (namely, DIKM) and compare
the performance of it with inertial reflected Krasnosel’skii-Mann type iteration proposed in [26, Algo-
rithm (14)] (namely, IRKM), Reflected Krasnosel’skii-Mann type iteration proposed in [25, Algorithm
(11)] (namely, RKM) and Inertial Krasnosel’skii-Mann type iteration proposed in [35, Algorithm (1.2)]
(namely, IKM).

6.1. Numerical experiments for fixed point problems
Example 6.1. Let H = R with absolute value norm. For each n ⩾ 1 and x ∈ R, let Tn : R → R be defined
by

Tnx :=
(3

4
+

1
n+ 3

)
sin x, ∀x ∈ R.

As shown in Example 5.2, that a family of mappings {Tn}
∞
n=1 is nonexpansive on R and it satisfies the

AKTT-property with F(T) =
⋂∞

n=1 F(Tn) = {0}. In this experiment, we use ϵ = 4 for our algorithm, RKM,
and IRKM. The parameters of each algorithm are chosen as seen in Table 1.

Table 1: Chosen parameters of each algorithm for Example 6.1.
Algorithms θ θn δn αn

IKM - 0.25 - 0.2 − 1
100n+1

RKM - - - 0.15 − 1
100n+1

IRKM 0.25 - - 0.2 − 1
100n+1

DIKM - 0.5 − 1
4n+17 0.29 − 1

4n2+17 0.2 − 1
100n+1

The initial points x0, x1 are generated randomly in R and we use En := |xn − 0| ⩽ ϵ̄ to measure the
iteration error of all the algorithms, where ϵ̄ ∈ {10−4, 10−5, 10−6, 10−7}. The numerical results for each ϵ̄

are shown in Table 2 and Figure 1.
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Table 2: Numerical results of all algorithms for Example 6.1.

Algorithms
ϵ̄ = 10−4 ϵ̄ = 10−5 ϵ̄ = 10−6 ϵ̄ = 10−7

Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)
IKM 143 0.0509 164 0.0734 210 0.0627 249 0.0970
RKM 212 0.0545 337 0.1130 420 0.1388 531 0.2160
IRKM 121 0.0701 151 0.0683 179 0.0907 206 0.1184
DIKM 103 0.0493 112 0.0571 144 0.0659 166 0.0712

Figure 1: Numerical results for Example 6.1. Top Left: ϵ̄ = 10−4; Top Right: ϵ̄ = 10−5; Bottom Left: ϵ̄ = 10−5; Bottom Right:
ϵ̄ = 10−7.

Example 6.2. Let H = ℓ2 with norm ∥x∥ℓ2 =
√∑∞

i=1 |xi|
2. For each t ⩾ 0 and x ∈ ℓ2, let Tt : ℓ2 → ℓ2 be

defined by
Ttx :=

(
e−tx1, e−2tx2, e−3tx3, . . .

)
, ∀x ∈ ℓ2.

As shown in Example 5.4, a family of mappings Ω := {Tt : t ⩾ 0} is nonexpansive on ℓ2 with F(Ω) = {0∗ =
(0, 0, 0, . . .)}. All the parameters are chosen as the same as in Table 1. The initial points of this Example
are generated randomly in ℓ2. We use En := ∥xn − 0∗∥ℓ2 ⩽ 10−8 to measure the iteration error of all the
algorithms. The four cases of tn are considered for numerical performing as follows:

Case I: tn =
√
n.

Case I: tn = 2n.
Case I: tn = n2 + 1.
Case I: tn = n!.

The numerical results for each case are shown in Table 3 and Figure 2.
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Table 3: Numerical results of all algorithms for Example 6.2.

Algorithms
Case I Case II Case III Case IV

Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)
IKM 97 0.0132 71 0.0210 68 0.0222 95 0.0365
RKM 246 0.0426 187 0.0656 172 0.0297 229 0.0558
IRKM 88 0.0221 67 0.0307 62 0.0116 85 0.0293
DIKM 77 0.0206 57 0.0111 55 0.0178 75 0.0173

Figure 2: Numerical results for Example 6.1. Top Left: Case I; Top Right: Case II; Bottom Left: Case III; Bottom Right: Case IV.

Remark 6.3. From the numerical results of both Examples 6.1 and 6.2, we see that our algorithm has a high
superiority and efficiency than IKM, RKM and IRKM for solving the fixed point problems of a family of
mappings in the sense that it requires a fewer number of iterations per time step.

6.2. Numerical experiments for data classifications

The Extreme Learning Machine (ELM) [24] is one of the efficient techniques for solving the data
classification problems in machine learning. We first present a basic concept of ELM for such a problem
and use apply ELM with our fixed pint algorithm to solve the problem of predictions of some cancers
through numerical experiments.

Let P := {(xn, tn) : xn ∈ Rp, tn ∈ Rq,n = 1, 2, ...,N,p,q ∈ N} be a training set of N distinct samples,
where xn is an input training data and tn is a target. The output function of ELM for single-hidden layer
feed forward neural networks (SLFNs) with S hidden nodes defined by

Oj =

S∑
i=1

ωiA(⟨wi, xj⟩+ bi),
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where A is an activation function, wi is a weight and bi is a bias. To find the optimal output weight wi

at the i-th hidden node, we define the hidden layer output matrix F by

F =

A(⟨w1, x1⟩+ b1) · · · A(⟨wS, x1⟩+ bS)
...

. . .
...

A(⟨w1, xN⟩+ b1) . . . A(⟨wS, xN⟩+ bS)

 .

The main goal of ELM is to find optimal output weight ω = [ω1,ω2, ...,ωS]
T such that

Fω = G, (6.1)

where G = [t1, t2, ..., tN]T is the training target data. In general cases, finding ω = F‡G, where F‡ denotes
the Moore-Penrose generalized inverse of F may be difficult when the matrix F does not exist. It is known
that (6.1) can be formulated as the following convex minimization problem:

min
ω

{f(ω) + g(ω)}, (6.2)

where f(ω) = 1
2∥Fω−G∥2

2 and g(ω) = λ∥ω∥1, λ > 0. We denote the set of solutions of (6.2) by P. Then
from [14, Proposition 3.1 (iii)(b)], we know that

ω ∈ P ⇔ 0 ∈ ∇f(ω) + ∂g(ω) ⇔ ω = Proxγ∂g(ω− γ∇f(ω)), γ > 0,

where Proxγ∂g is the resolvent of ∂g defined by Proxγ∂g := (I+ γ∂g)−1. We know that Proxγ∂g(I− γ∇f)
is a nonexpansive mapping if γ ∈ (0, 2/L), where L is the Lipschitz constant of ∇f. In this case, L = ∥F∥2.
Therefore the proposed algorithm can be applied to solve the problem of predictions when we set

Tx := Proxγ∂g(I− γ∇f)x.

To evaluate the quality of the algorithms in terms of prediction performance, the following metrics are
used [7, 38]:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100%, Precision =

TP
TP + FP

× 100%,

Recall =
TP

TN + FN
× 100%, F1-score =

2 × Precision × Recall
Precision + Recall

,

where TP represents true positive, TN represents true negative, FP represents false positive, and FN repre-
sents false negative. Binary cross-entropy is a mathematical concept and a loss function used in various
machine learning and deep learning applications, especially in binary classification problems. It mea-
sures the dissimilarity, often called ’cross-entropy,’ between the predicted probabilities and the actual
binary labels (0 or 1). The following formula defines as follows:

Loss = −
1
N

N∑
i=1

(
yi · log(pi) + (1 − yi) · log(1 − pi)

)
,

where N is the number of scalar values in the model output, yi is the corresponding target value, pi is
the i-th scalar value in the model output.

Example 6.4. In this experiment, our aim is to predict breast cancer disease using a dataset available
at [51]. Breast cancer occurs when cells in the breast undergo mutations, transforming into cancerous
cells that proliferate and develop tumors. While breast cancer primarily impacts women and individuals
who are aged 50 and above, it can also affect men and younger women [61]. Breast cancer stands as the
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predominant form of cancer globally, resulting in 685,000 deaths in 2020 [63]. The survival rates for breast
cancer differ depending on the stage of the cancer and can be impacted by various factors including age,
race, and treatment choices. For women diagnosed with stage 1 breast cancer, the 5-year overall survival
rate was reported to be 90%. This indicates that 90% of women diagnosed with stage 1 breast cancer
survive for at least 5 years following diagnosis [58]. The advantage of breast cancer prediction systems lies
in their capacity to employ machine learning techniques, amalgamating numerous risk factors to facilitate
early disease detection. Such systems aid in formulating essential care strategies and enhancing disease
management [60]. Additionally, clinical decision support systems and prognostic models offer valuable
insights into breast cancer prognosis and treatment efficacy, thereby fostering better patient outcomes and
informed decision-making.

The dataset used in this experiment contains 11 attributes, with the first being the ID, which we
will remove since it is not a feature we want to include in our classification. The breast cancer dataset
comprises 699 instances, with 458 classified as benign and 241 as malignant. Any missing instances have
been removed to improve the system’s accuracy, resulting in a dataset of 683 instances used for feature
selection. A detailed description of the breast cancer dataset is provided in Table 4.

Table 4: Overview of breast cancer data.
Description of attributes Domain Missing values Mean Median Standard deviation
Sample code number ID number 0 - - -

Input
Clump thickness 1-10 0 4.4422 4 2.8208
Uniformity of cell size 1-10 0 3.1508 1 3.0651
Uniformity of cell shape 1-10 0 3.2152 1 2.9886
Marginal adhesion 1-10 0 2.8302 1 2.8646
Single epithelial cell size 1-10 16 3.2343 2 2.2231
Bare Nuclei 1-10 0 3.5447 1 3.6439
Bland Chromatin 1-10 0 3.4451 3 2.4497
Normal Nucleoli 1-10 0 2.8697 1 3.0527
Mitoses 1-10 0 1.6032 1 1.7327

Output
Class 2 := benign 0 1.3499 1 0.4773

4 := malignant

We partition the dataset into 70% for training and 30% for testing. The activation function is sigmoid,
regularization parameter λ = 10−5, γ = 0.99

∥F∥2 , ϵ = 4, and S = 270. The parameters of each algorithm are
chosen as seen in Table 5.

Table 5: Chosen parameters of each algorithm for breast cancer data.
Algorithms θ θn δn αn

IKM - 0.18 - 0.19 − 1
100n+1

RKM - - - 0.15 − 1
100n+1

IRKM 0.18 - - 0.2 − 1
100n+1

DIKM - 0.9 − 1
4n+1 0.25 − 1

4n2+1 0.2 − 1
100n+1

The breast cancer prediction results are presented in Table 6.

Table 6: Comparison of the performance with each algorithm for breast cancer data.
Algorithm Iteration No. Training time Precision Recall F1-score Accuracy

IKM 971 0.0300 95.83 95.83 95.83 97.07
RKM 961 0.0196 95.83 95.83 95.83 97.07
IRKM 911 0.0204 95.83 95.83 95.83 97.07
DIKM 807 0.0115 95.89 97.22 96.55 97.56
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Remark 6.5. From Table 6, we see that DIKM has a precision, recall, F1-score and accuracy more than IKM,
RKM and IRKM. Moreover, it also has the lowest number of iterations and training time. This mean that
our algorithm has the highest probability of correctly classifying breast cancer compared to other existing
algorithms in terms of the overall performance measurement.

Next, we compare our algorithm with some machine learning algorithms in terms of accuracy using
the same set of information. The results are presented in Table 7.

Table 7: Comparison of the performance with some machine learning algorithms.
References Algorithms Validation Accuracy

Decision Tree (DT) 96.10
Random Forest (RF) 96.10

Li et al. [32] Support Vector Machine (SVM) train (70%), test (30%) 95.10
Neural Network (NN) 95.60

Logistic Regression (LR) 93.70
Amrane et al. [4] k-Nearest Neighbors (kNN) k-fold cross validation (k = 5) 97.51

Naive Bayes (NB) 96.19
Proposed algorithm DIKM train (70%), test (30%) 97.56

Remark 6.6. As can be seen from Table 7 that our algorithm has the highest efficiency in accuracy, estab-
lishing it as the most accurate predictor of breast cancer.

Moreover, we also present the graphs of accuracy and loss for both the training and validation data to
assess the potential overfitting of our algorithm.

Figure 3: Accuracy and Loss plots of proposed algorithm for breast cancer data.

Remark 6.7. From Figure 3, it is evident that training loss and validation loss values tend to decrease until
a certain point, after which they stabilize. In contrast, upon analyzing the accuracy graph, it becomes ap-
parent that training and validation accuracy show an upward trend, with validation accuracy consistently
surpassing training accuracy.

Example 6.8. In this experiment, we aim to predict cases of cervical cancer disease using a particular
dataset available through [12]. Cervical cancer is a serious disease that starts in the cells of the cervix, the
lower part of the uterus that connects to the vagina. It’s important to note that most cases of cervical cancer
are caused by the human papillomavirus (HPV), which is a common sexually transmitted infection. This
means that anyone who has ever been sexually active can potentially be at risk for developing cervical
cancer [37]. Cervical cancer remains a significant concern worldwide and continues to be a leading
cause of deaths among women globally. An estimated 341,000 women lose their lives to cervical cancer
annually. Furthermore, there were approximately 604,000 new cases reported in 2020 [57], highlighting
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the urgent need for increased awareness, prevention, and access to screening and treatment options. When
cervical cancer is detected early and remains confined to the cervix, the chances of successful treatment
and a positive outlook are generally much higher. In fact, for cases where the cancer is localized, the
5-year survival rate is often quite promising, ranging from 92% to 93% [59]. This means that most
individuals diagnosed with early-stage cervical cancer have a good chance of surviving for at least five
years after diagnosis. As cervical cancer progresses to more advanced stages, the 5-year survival rate
decreases significantly, typically falling between 15% to 65% [59]. This emphasizes the importance of
early detection through regular screenings, as it greatly improves the chances of successful treatment and
a positive outcome for individuals diagnosed with cervical cancer. Prediction systems for cervical cancer
enable personalized approaches to prevention, screening, and treatment, serving as invaluable tools for
healthcare providers to make informed decisions about patient care [62]. These systems assist healthcare
professionals in recommending appropriate screening intervals, follow-up testing, and treatment options
based on the individual’s risk profile. This enhances the quality of care and empowers patients to take
proactive steps towards managing their cervical health.

The data set used in this experiment is relatively small, consisting of 72 instances or records with
19 attributes, one of which is the class attribute ’ca_cervix.’ of the 72 samples, 21 were categorized as
positive (has cervical cancer), while the remaining 51 were negative (no cervical cancer). Notably, the
dataset contained no missing values, and all attributes, including the class variable, were in int64 format.
Therefore, no encoding was necessary for their utilization.

A detailed description of the cervical cancer behavior risk dataset is provided in Table 8.

Table 8: Overview of cervical cancer behavior risk data.
Description of attributes Max Min Mean Median Standard deviation

Input
behavior_sexualRisk 10 2 9.6667 10 1.1868
behavior_eating 15 3 12.7917 13 2.3613
behavior_personalHygine 15 3 11.0833 11 3.0338
intention_aggregation 10 2 7.9028 10 2.7381
intention_commitment 15 6 13.3472 15 2.3745
attitude_consistency 10 2 7.1806 7 1.5228
attitude_spontaneity 10 4 8.6111 9 1.5157
norm_significantPerson 5 1 3.1250 3 1.8457
norm_fulfillment 15 3 8.4861 7 4.9076
perception_vulnerability 15 3 8.5139 8 4.2757
perception_severity 10 2 5.3889 4 3.4007
motivation_strength 15 3 12.6528 14 3.2072
motivation_willingness 15 3 9.6944 11 4.1304
socialSupport_emotionality 15 3 8.0972 2 4.2432
socialSupport_appreciation 10 2 6.1667 6.5 2.8973
socialSupport_instrumental 15 3 10.3750 12 4.3165
empowerment_knowledge 15 3 10.5417 12 4.3668
empowerment_abilities 15 3 9.3194 10 4.1819
empowerment_desires 15 3 10.2778 11 4.4823

Output
ca_cervix 1 0 0.2917 0 0.4577

We partition the dataset into 80% for training and 20% for testing. All the parameters are chosen as
the same as in Table 5. The cervical cancer prediction results are presented in Table 9.
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Table 9: Comparison of the performance with each algorithm for cervical cancer behavior risk data.
Algorithms Iteration No. Training time Precision Recall F1-score Accuracy

IKM 304 0.0041 83.33 100.00 90.91 85.71
RKM 311 0.0042 83.33 100.00 90.91 85.71
IRKM 241 0.0040 83.33 100.00 90.91 85.71
DIKM 177 0.0038 83.33 100.00 90.91 85.71

Remark 6.9. From Table 9, we see that IKM, RKM, IRKM, and DIKM are equal of precision, recall, F1-score
and accuracy. However, DIKM has the lowest number of iterations and training time. This mean that our
algorithm still outperforms other existing algorithms.

Next, we compare our algorithm with some machine learning algorithms in terms of accuracy using
the same set of information. The results are presented in Table 10.

Table 10: Comparison of the performance with some machine learning algorithms.
References Algorithms Validation Accuracy

Tarakci et al. [47] k-Nearest Neighbors (kNN) k-fold cross validation (k = 10) 84.70
Decision trees J48 70.83

Ghanem et al. [22] RadSVM k-fold cross validation (k = 5) 70.83
Statistical implicative analysis (SIA) 80.56

Proposed algorithm DIKM train (80%), test (20%) 85.71

Remark 6.10. From Table 10, we see that our algorithm has the highest efficiency in accuracy, establishing
it as the most accurate predictor of cervical cancer behavior risk.

Next, we also present the graphs of accuracy and loss for both the training and validation data to
assess the potential overfitting of our algorithm.

Figure 4: Accuracy and Loss plots of proposed algorithm for cervical cancer behavior risk data.

Remark 6.11. As can be seen from Figure 4, it is clear that the training loss and validation loss values
tend to decrease up to a certain point, after which they remain constant. Conversely, when analyzing the
accuracy graph, it is evident that both training and validation accuracies show an upward trend, with
training accuracy surpassing validation accuracy.

7. Conclusions

In this paper, we proposed a Krasnosel’skii-Mann-type iteration with double inertial steps for finding
fixed points of nonexpansive mappings in the framework of Hilbert spaces. The weak convergence of
the proposed method was established under suitable conditions imposed on the inertial parameters.
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Furthermore, we demonstrated applications of the method to fixed point problems of a countable family
of nonexpansive mappings, semigroups of nonexpansive mappings, and the monotone inclusion problem.
Finally, several numerical experiments were conducted to illustrate that the proposed method is effective
and competitive compared to some existing algorithms presented in [25, 26, 35].
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