Qualitative results and Lyapunov-type inequality for a new \(\varphi\)-ABC fractional boundary value problem
Authors
S. T. M. Thabet
- Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India.
- Department of Mathematics, Radfan University College, University of Lahej, Lahej, Yemen.
- Department of Mathematics, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02814, Republic of Korea.
T. Abdeljawad
- Department of Fundamental Sciences, Faculty of Engineering and Architecture, Istanbul Gelisim University, Avcılar- Istanbul, 34310, Turkey.
- Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, 11586 Riyadh, Saudi Arabia.
- Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Garankuwa, Medusa 0204, South Africa.
I. Kedim
- Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
B. Abdalla
- Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, 11586 Riyadh, Saudi Arabia.
Abstract
This paper investigates a new category of a fractional boundary value problem (BVP) involving the generalized Atangana-Baleanu-Caputo (ABC) derivatives of order belonging to \((2,3].\) First, the Green function with its properties for a proposed fractional \(\mathrm{BVP}\) are derived. Then, the theoretical results are established by various techniques. The existence and uniqueness of theorems of the solutions are proved by utilizing the Weissinger, the Aghajani fixed point theorems, the Meir-Keeler condensing operator, and the Kuratowski's measure of non-compactness techniques. The sufficient conditions of the existence and non-existence results of nontrivial solutions for the proposed problem are investigated by introducing the Lyapunov-type inequality (\(\mathbb{LTI}\)).
Finally, our findings are compared with the existing results in the literature. The validity of the main outcomes is also tested by numerical examples with graphs and tables, and the strict minimum borders of eigenvalues for several fractional \(\mathrm{BVP}s\) are estimated. This work is the first to deal with \(\mathbb{LTI}\) for fractional \(\mathrm{BVP}\) in the sense of generalized ABC derivatives.
Share and Cite
ISRP Style
S. T. M. Thabet, T. Abdeljawad, I. Kedim, B. Abdalla, Qualitative results and Lyapunov-type inequality for a new \(\varphi\)-ABC fractional boundary value problem, Journal of Mathematics and Computer Science, 41 (2026), no. 1, 9--24
AMA Style
Thabet S. T. M., Abdeljawad T., Kedim I., Abdalla B., Qualitative results and Lyapunov-type inequality for a new \(\varphi\)-ABC fractional boundary value problem. J Math Comput SCI-JM. (2026); 41(1):9--24
Chicago/Turabian Style
Thabet, S. T. M., Abdeljawad, T., Kedim, I., Abdalla, B.. "Qualitative results and Lyapunov-type inequality for a new \(\varphi\)-ABC fractional boundary value problem." Journal of Mathematics and Computer Science, 41, no. 1 (2026): 9--24
Keywords
- Fractional Atangana-Baleanu-Caputo derivative
- fractional boundary value problem
- Weissinger fixed point theorems
- Meir-Keeler condensing operator
- Lyapunov-type inequality
MSC
References
-
[1]
T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 11 pages
-
[2]
T. Abdeljawad, S. T. M. Thabet, I. Kedim, M. I. Ayari, A. Khan, A higher-order extension of Atangana-Baleanu fractional operators with respect to another function and a Gronwall-type inequality, Bound. Value Probl., 2023 (2023), 16 pages
-
[3]
A. Aghajani, M. Mursaleen, A. Shole Haghighi, Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness, Acta Math. Sci. Ser. B (Engl. Ed.), 35 (2015), 552–566
-
[4]
Z. Ahmad, F. Ali, N. Khan, I. Khan, Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel, Chaos Solitons Fractals, 153 (2021), 20 pages
-
[5]
R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci., 41 (2018), 336–352
-
[6]
A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Thermal Sci., 20 (2016), 763–769
-
[7]
H. Baghani, M. Feˇckan, J. Farokhi-Ostad, J. Alzabut, New existence and uniqueness result for fractional Bagley-Torvik differential equation, Miskolc Math. Notes, 23 (2022), 537–549
-
[8]
Y. Bi, T. Wang, J. Qiu, M. Li, C. Wei, L. Yuan, Adaptive decentralized finite-time fuzzy secure control for uncertain nonlinear CPSs under deception attacks, IEEE Trans. Fuzzy Syst., 31 (2023), 2568–2580
-
[9]
H. Boulares, A. Moumen, K. Fernane, J. Alzabut, H. Saber, T. Alraqad, M. Benaissa, On solutions of fractional integrodifferential systems involving psi-Caputo derivative and psi-Riemann-Liouville fractional integral, Mathematics, 11 (2023), 10 pages
-
[10]
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85
-
[11]
C. Derbazi, Z. Baitiche, M. Benchohra, G. N’Guérékata, Existence, uniqueness, and Mittag-Leffler-Ulam stability results for Cauchy problem involving psi-Caputo derivative in Banach and Fréchet spaces, Int. J. Differ. Equ., 2020 (2020), 16 pages
-
[12]
S. Dhar, Q. Kong, Lyapunov-type inequalities for α − th order fractional differential equations with 2 < α ⩽ 3 and fractional boundary conditions, Electron. J. Differ. Equ., 2017 (2017), 1–15
-
[13]
K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248
-
[14]
A. Fernandez, D. Baleanu, Differintegration with respect to functions in fractional models involving Mittag-Leffler functions, In: Proceedings of International Conference on Fractional Differentiation and its Applications (ICFDA), SSRN Electron. J., (2018), 5 pages
-
[15]
R. A. C. Ferreira, A Lyapunov-type inequality for a fractional boundary-value problem, Fract. Calc. Appl. Anal., 16 (2013), 978–984
-
[16]
A. J. Gnanaprakasam, B. Ramalingam, G. Mani, O. Ege, R. George, A numerical scheme and application to the fractional integro-differential equation using fixed-point techniques, Fractal Fract., 8 (2024), 17 pages
-
[17]
D. J. Guo, V. Lakshmikantham, X. Z. Liu, Nonlinear integral equations in abstract spaces, Kluwer Academic Publishers Group, Dordrecht (1996)
-
[18]
A. Guezane-Lakoud, R. Khaldi, D. F. M. Torres, Lyapunov-type inequality for a fractional boundary value problem with natural conditions, SeMA J., 75 (2018), 157–162
-
[19]
R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing Co., River Edge, NJ (2000)
-
[20]
F. Jarad, Y. Adjari, T. Abdeljawad, S. F. Mallak, H. Alrabaiah, Lyapunov type inequality in the frame of generalized Caputo derivatives, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 2335–2355
-
[21]
M. Jleli, B. Samet, A Lyapunov-type inequality for a fractional q-difference boundary value problem, J. Nonlinear Sci. Appl., 9 (2016), 1965–1976
-
[22]
Kamran, A. Ahmadian, S. Salahshour, M. Salimi, A robust numerical approximation of advection diffusion equations with nonsingular kernel derivative, Phys. Scr., 96 (2021),
-
[23]
Z. Kayar, An existence and uniqueness result for linear fractional impulsive boundary value problems as an application of Lyapunov type inequality, Hacet. J. Math. Stat., 47 (2018), 287–297
-
[24]
Y. X. Li, Existence of solutions to initial value problems for abstract semilinear evolution equations, Acta Math. Sinica (Chinese Ser.), 48 (2005), 1089–1094
-
[25]
A. Liapounoff, Problème général de la stabilité du mouvement, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (2), 9 (1907), 203–247
-
[26]
B. Łupi´ nska, T. Odzijewicz, A Lyapunov-type inequality with the Katugampola fractional derivative, Math. Methods Appl. Sci., 41 (2018), 8985–8996
-
[27]
Q. Ma, C. Na, J. Wang, A Lyapunov-type inequality for a fractional differential equation with Hadamard derivative, J. Math. Inequal., 11 (2017), 135–141
-
[28]
G. Mani, R. Ramaswamy, A. J. Gnanaprakasam, A. Elsonbaty, O. A. A. Abdelnaby, S. Radenovic, Application of fixed points in bipolar controlled metric space to solve fractional differential equation, Fractal Fract., 7 (2023), 20 pages
-
[29]
G. Mani, P. Subbarayan, Z. D. Mitrovic, A. Aloqaily, N. Mlaiki, Solving some integral and fractional differential equations via neutrosophic pentagonal metric space, Axioms, 12 (2023), 30 pages
-
[30]
G. Nallaselli, A. J. Gnanaprakasam, G. Mani, Z. D. Mitrovic, A. Aloqaily, N. Mlaiki, Integral equation via fixed point theorems on a new type of convex contraction in b-metric and 2-metric spaces, Mathematics, 11 (2023), 18 pages
-
[31]
S. K. Ntouyas, B. Ahmad, Lyapunov-type inequalities for fractional differential equations: a survey, Surv. Math. Appl., 16 (2021), 43–93
-
[32]
S. K. Ntouyas, B. Ahmad, T. Horikis, Recent developments of Lyapunov-type inequalities for fractional differential equations, In: Differential and integral inequalities, Springer, Cham, 151 (2019), 619–686
-
[33]
N. Parhi, S. Panigrahi, On Liapunov-type inequality for third-order differential equations, J. Math. Anal. Appl., 233 (1999), 445–460
-
[34]
N. Pathak, Lyapunov-type inequality for fractional boundary value problems with Hilfer derivative, Math. Inequal. Appl., 21 (2018), 179–200
-
[35]
J. Qiu, W. Ji, H.-K. Lam, A new design of fuzzy affine model-based output feedback control for discrete-time nonlinear systems, IEEE Trans. Fuzzy Syst., 31 (2023), 1434–1444
-
[36]
S. Rezapour, S. T. M. Thabet, A. S. Rafeeq, I. Kedim, M. Vivas-Cortez, N. Aghazadeh, Topology degree results on a G-ABC implicit fractional differential equation under three-point boundary conditions, PLoS ONE, 19 (2024), 19 pages
-
[37]
A. G. M. Selvam, D. Baleanu, J. Alzabut, D. Vignesh, S. Abbas, On Hyers-Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulum, Adv. Difference Equ., 2020 (2020), 15 pages
-
[38]
S. T. M. Thabet, T. Abdeljawad, I. Kedim, M. I. Ayari, A new weighted fractional operator with respect to another function via a new modified generalized Mittag-Leffler law, Bound. Value Probl., 2023 (2023), 16 pages
-
[39]
S. T. M. Thabet, I. Kedim, An investigation of a new Lyapunov-type inequality for Katugampola-Hilfer fractional BVP with nonlocal and integral boundary conditions, J. Inequal. Appl., 2023 (2023), 22 pages
-
[40]
S. T. M. Thabet, M. Vivas-Cortez, I. Kedim, Analytical study of ABC-fractional pantograph implicit differential equation with respect to another function, AIMS Math., 8 (2023), 23635–23654
-
[41]
S. Toprakseven, On Lyapunov-type inequalities for boundary value problems of fractional Caputo-Fabrizio derivative, Turkish J. Math., 44 (2020), 1362–1375
-
[42]
J. Wang, Kamran, A. Jamal, X. Li, Numerical solution of fractional-order Fredholm integrodifferential equation in the sense of Atangana–Baleanu derivative, Math. Probl. Eng., 2021 (2021), 8 pages
-
[43]
X. Wang, R. Xu, The existence and uniqueness of solutions and Lyapunov-type inequality for CFR fractional differential equations, J. Funct. Spaces, 2018 (2018), 7 pages
-
[44]
X.-J. Yang, General fractional derivatives: theory, methods and applications, CRC Press, Boca Raton, FL (2019)
-
[45]
Y. Zhou, Basic theory of fractional differential equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2014)