On pantograph \(\psi\)-Caputo integro-differential problems via upper and lower solutions
Authors
H. Bouzid
- Department of Mathematics, Faculty of Exact Science and Informatics, Hassiba Benbouali University of Chlef, Ouled Fares, Chlef 02000, Laboratory of Mathematics and Applications (LMA), Algeria.
A. Benali
- Department of Mathematics, Faculty of Exact Science and Informatics, Hassiba Benbouali University of Chlef, Ouled Fares, Chlef 02000, Laboratory of Mathematics and Applications (LMA), Algeria.
A. Salim
- Faculty of Technology, Hassiba Benbouali University of Chlef, P.O. Box 151, Chlef 02000, Algeria.
- Laboratory of Mathematics, Djillali Liabes University of Sidi-Bel-Abbes, P.O. Box 89, Sidi Bel-Abbes 22000, Algeria.
I. Alraddadi
- Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia.
Abstract
In this study, we explore the existence of positive solutions for a class of fractional differential pantograph equations that incorporate the \(\psi\)-Caputo fractional derivative under specified initial conditions. By reformulating the problem as an equivalent Riemann-Liouville integral equation, we rigorously derive our principal results using the upper and lower solutions method. Lastly, we present an example to
demonstrate the validity of our results.
Share and Cite
ISRP Style
H. Bouzid, A. Benali, A. Salim, I. Alraddadi, On pantograph \(\psi\)-Caputo integro-differential problems via upper and lower solutions, Journal of Mathematics and Computer Science, 40 (2026), no. 4, 533--541
AMA Style
Bouzid H., Benali A., Salim A., Alraddadi I., On pantograph \(\psi\)-Caputo integro-differential problems via upper and lower solutions. J Math Comput SCI-JM. (2026); 40(4):533--541
Chicago/Turabian Style
Bouzid, H., Benali, A., Salim, A., Alraddadi, I.. "On pantograph \(\psi\)-Caputo integro-differential problems via upper and lower solutions." Journal of Mathematics and Computer Science, 40, no. 4 (2026): 533--541
Keywords
- Fractional differential pantograph equations
- \(\psi\)-fractional integral and derivative
- Arzelá-Ascoli theorem
- upper and lower solutions
MSC
References
-
[1]
S. Abbas, M. Benchohra, A. Hammoudi, Upper and lower solutions method and extremal solutions for impulsive discontinuous partial fractional differential inclusions, PanAmer. Math. J., 24 (2014), 31–52
-
[2]
R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481.
-
[3]
R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci., 41 (2018), 336–352
-
[4]
I. Al-Shbeil, A. Benal, H. Bouzid, N. Aloraini, Existence of solutions for multi-point nonlinear differential system equations of Q-fractional orders with integral boundary conditions, AIMS Math., 7 (2022), 18142–18157
-
[5]
Z. Baitiche, C. Derbazi, A. Salim, M. Benchohra, Monotone iterative technique for sequential ψ-Caputo fractional differential equations with nonlinear boundary conditions, Stud. Univ. Babe¸s-Bolyai Math., 69 (2024), 553–565
-
[6]
K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci. Ser. B (Engl. Ed.), 33 (2013), 712–720
-
[7]
M. Benchohra, S. K. Ntouyas, The lower and upper solutions method for first order differential inclusions with nonlinear boundary conditions, JIPAM. J. Inequal. Pure Appl. Math., 3 (2002), 8 pages
-
[8]
G. Derfel, A. Iserles, The pantograph equation in the complex plane, J. Math. Anal. Appl., 213 (1997), 117–132
-
[9]
R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing Co., River Edge, NJ (2000)
-
[10]
A. Iserles, Exact and discretized stability of the pantograph equation, Appl. Numer. Math., 24 (1997), 295–308
-
[11]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam (2006)
-
[12]
M. M. Matar, S. Ayadi, J. Alzabut, A. Salim, Fixed point approach for nonlinear ψ-Caputo fractional differential hybrid coupled system with periodic boundary conditions, Results Nonlinear Anal., 6 (2023), 13–29
-
[13]
K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9–12
-
[14]
I. Podlubny, Fractional differential equations, Academic Press, San Diego (1999)
-
[15]
J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht (2007)
-
[16]
A. Salim, J. Alzabut, W. Sudsutad, C. Thaiprayoon, On impulsive implicit ψ-Caputo hybrid fractional differential equations with retardation and anticipation, Mathematics, 10 (2022), 20 pages
-
[17]
V. E. Tarasov, Fractional dynamics, Springer, Heidelberg; Higher Education Press, Beijing (2010)
-
[18]
H. A. Wahash, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers stability of the implicit fractional boundary value problem with ψ-Caputo fractional derivative, J. Appl. Math. Comput. Mech., 19 (2020), 89–101
-
[19]
Z.-H. Yu, Variational iteration method for solving the multi-pantograph delay equation, Phys. Lett. A, 372 (2008), 6475– 6479
-
[20]
Y. Zhou, Basic theory of fractional differential equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2014)
-
[21]
Y. Zhou, Fractional evolution equations and inclusions: analysis and control, Elsevier/Academic Press, London (2016)