A Refined form of the generalized Jensen inequality through an arbitrary function
Authors
S. Sahar
- Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan.
M. A. Khan
- Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan.
Sh. Khan
- Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan.
S. H. Altoum
- Department of Mathematics, University College of Qunfudhah, Umm Al-Qura University, Makkah, Saudi Arabia.
E. R. Nwaeze
- Department of Mathematics and Computer Science, Alabama State University, Montgomery, AL 36101, USA.
Abstract
This article is about a refined form of the generalized Jensen inequality in Riemann sense, which is obtained through a positive integrable function. Then manipulation of certain functions with suitable substitutions in the proposed result enables to establish new refined inequalities for the well-known Hölder, and celebrated Hermite--Hadamard inequalities along with power, and quasi-arithmetic means. Further the proposed result also gives refined estimates to Csiszár divergence and its particular variants.
Share and Cite
ISRP Style
S. Sahar, M. A. Khan, Sh. Khan, S. H. Altoum, E. R. Nwaeze, A Refined form of the generalized Jensen inequality through an arbitrary function, Journal of Mathematics and Computer Science, 39 (2025), no. 3, 376--385
AMA Style
Sahar S., Khan M. A., Khan Sh., Altoum S. H., Nwaeze E. R., A Refined form of the generalized Jensen inequality through an arbitrary function. J Math Comput SCI-JM. (2025); 39(3):376--385
Chicago/Turabian Style
Sahar, S., Khan, M. A., Khan, Sh., Altoum, S. H., Nwaeze, E. R.. "A Refined form of the generalized Jensen inequality through an arbitrary function." Journal of Mathematics and Computer Science, 39, no. 3 (2025): 376--385
Keywords
- Jensen inequality
- Hermite--Hadamard inequality
- Hölder inequality
- Csiszár divergence
MSC
References
-
[1]
M. Adil Khan, S. Khan, Ð. Peˇcari´c, J. Peˇcari´c, New improvements of Jensen’s type inequalities via 4-convex functions with applications, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 115 (2021), 21 pages
-
[2]
M. Adil Khan, A. Sohail, H. Ullah, T. Saeed, Estimations of the Jensen Gap and Their Applications Based on 6-Convexity, Mathematics, 11 (2023), 25 pages
-
[3]
M. Adil Khan, H. Ullah, T. Saeed, Some estimations of the Jensen difference and applications, Math. Methods Appl. Sci., 46 (2023), 5863–5892
-
[4]
K. Ahmad, M. A. Khan, S. Khan, A. Ali, Y.-M. Chu, New estimates for generalized Shannon and Zipf-Mandelbrot entropies via convexity results, Results Phys., 18 (2020), 7 pages
-
[5]
K. Ahmad, M. Adil Khan, S. Khan, A. Ali, Y.-M. Chu, New estimation of Zipf-Mandelbrot and Shannon entropies via refinements of Jensen’s inequality, AIP Adv., 11 (2021), 9 pages
-
[6]
S. A. Azar, Jensen’s inequality in finance, Int. Adv. Econ. Res., 14 (2008), 433–440
-
[7]
S.-Y. Chang, Generalized Converses of Operator Jensens Inequalities with Applications to Hypercomplex Function Approximations and Bounds Algebra, arXiv preprint arXiv:2404.11880, (2024), 25 pages
-
[8]
S.-B. Chen, S. Rashid, M. A. Noor, R. Ashraf, Y.-M. Chu, A new approach on fractional calculus and probability density function, AIMS Math., 5 (2020), 7041–7054
-
[9]
Y. Deng, H. Ullah, M. Adil Khan, S. Iqbal, S. Wu, Refinements of Jensen’s inequality via majorization results with applications in the information theory, J. Math., 2021 (2021), 12 pages
-
[10]
L. Horváth, Refinements of the integral Jensen’s inequality generated by finite or infinite permutations, J. Inequal. Appl., 2021 (2021), 14 pages
-
[11]
A.-A. Hyder, A. A. Almoneef, H. Budak, Improvement in Some Inequalities via Jensen-Mercer Inequality and Fractional Extended Riemann-Liouville Integrals, Axioms, 12 (2023), 19 pages
-
[12]
L. Horváth, Refining the integral Jensen inequality for finite signed measures using majorization, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 118 (2024), 21 pages
-
[13]
S. Khan, M. Adil Khan, Y.-M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Methods Appl. Sci., 43 (2020), 2577–2587
-
[14]
T. Li, D. Acosta-Soba, A. Columbu, G. Viglialoro, Dissipative gradient nonlinearities prevent δ-formations in local and nonlocal attraction-repulsion chemotaxis models, Stud. Appl. Math., 154 (2025), 19 pages
-
[15]
J. G. Liao, A. Berg, Sharpening Jensen’s inequality, Am. Stat., 73 (2019), 278–281
-
[16]
N. Latif, Ð. Peˇcari´c, J. Peˇcari´c, Majorization, “useful” Csiszár divergence and “useful” Zipf-Mandelbrot law, Open Math., 16 (2018), 1357–1373
-
[17]
D. J. C. MacKay, Information theory, inference and learning algorithms, Cambridge University Press, New York (2003)
-
[18]
S. Nazari Pasari, A. Barani, N. Abbasi, Generalized integral Jensen inequality, J. Inequal. App., 2021 (2021), 11 pages
-
[19]
T. Rasheed, S. I. Butt, Ð. Peˇcari´c, J. Peˇcari´c, Generalized cyclic Jensen and information inequalities, Chaos Solitons Fractals, 163 (2022), 9 pages
-
[20]
Z. M. M. M. Sayed, M. Adil Khan, S. Khan, J. Peˇcari´c, A refinement of the integral Jensen inequality pertaining certain functions with applications, J. Funct. Spaces, 2022 (2022), 11 pages
-
[21]
Z. M. M. M. Sayed, M. Adil Khan, S. Khan, J. Peˇcari´c, Refinement of the classical Jensen inequality using finite sequences, Hacet. J. Math. Stat., 53 (2024), 608–627
-
[22]
Y. Sayyari, H. Barsam, A. R. Sattarzadeh, On new refinement of the Jensen inequality using uniformly convex functions with applications, Appl. Anal., 10 (2023), 5215–5223
-
[23]
J.-A. Wang, X.-Y. Wen, B.-Y. Hou, Advanced stability criteria for static neural networks with interval time-varying delays via the improved Jensen inequality, Neurocomputing, 377 (2020), 49–56
-
[24]
D. Zhang, C. Guo, D. Chen, G. Wang, Jensen’s inequalities for set-valued and fuzzy set-valued functions, Fuzzy Sets Syst., 404 (2021), 178–204
-
[25]
D. Zhang, R. Mesiar, E. Pap, Jensen’s inequalities for standard and generalized asymmetric Choquet integrals, Fuzzy Sets Syst., 457 (2023), 119–124