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Abstract

This article is about a refined form of the generalized Jensen inequality in Riemann sense, which is obtained through a
positive integrable function. Then manipulation of certain functions with suitable substitutions in the proposed result enables to
establish new refined inequalities for the well-known Hélder, and celebrated Hermite-Hadamard inequalities along with power,
and quasi-arithmetic means. Further the proposed result also gives refined estimates to Csiszar divergence and its particular
variants.
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1. Introduction

Mathematical inequalities and convexity are closely related concepts that help us to describe and set
limits on behaviors across various fields. Convexity is a basic property of functions or shapes that curve
upward smoothly, without any dips. If, we connect any two points on the graph of a convex function
through a line, the line will always lie above or on the graph itself. This aspect allows us to establish
inequalities because convex functions follow certain natural laws, for example Jensen’s inequality, which
relates the value of a function at an average point to the average of the values of corresponding function.
By interpreting convexity, one can set useful boundaries and find the best solutions in different fields like
chemistry, computer science, information theory, economics, optimization, and machine learning.

Over a century ago, Jensen introduced an inequality for convex functions that remains one of the
most important and widely applied inequalities in mathematical literature, known as Jensen’s inequal-
ity. It is significant because it serves as the foundation for deriving many well-known inequalities, in-
cluding Holder’s, Young’s, the arithmetic-geometric, Ky-Fan’s, Levinson’s, Beckenbach—Dresher’s, and
Minkowski’s inequalities. This inequality has been instrumental in solving numerous problems across
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various fields, including engineering [8], information theory [4, 5, 22], mathematical statistics [15], com-
puter science [17], financial economics [6], and mathematical biology [14]. Extensive research also explores
its refinements [12], converse results [7], generalizations [19], extensions [24], and bounds for its gap [2, 3].
The following theorem presents a generalized form of this inequality in Riemann sense [13].

Theorem 1.1. Let f : I — R be a function that exhibits convexity. Let g and h be real-valued functions that can
be integrated over the interval [u,v]. Then, for g(x) > 0 and h(x) € I for all x € [u,v] with fle g(x)dx = G, the
aforesaid inequality follows

f (1J g(x)h(x)dx) < éJ g(x) (foh) (x)dx.

G u u

A recent work about this inequality can be followed as, the paper [23] proposes new delay-dependent
stability criteria for static neural networks with time-varying delays using an improved Lyapunov—Kraso-
vskii functional, the celebrated Jensen inequality, and parameter-dependent linear matrix inequality. Some
enhanced conditions are achieved via augmented vectors, and the achieved results are validated through
numerical examples. The article [25] corrects a previous error regarding Jensen’s inequality for the asym-
metric Choquet integral, proving its validity. It also extends the result by establishing Jensen’s inequality
for the generalized asymmetric Choquet integral. The next article [11] focuses on finding new inequalities,
such as midpoint, the Hermite-Hadamard, and trapezoid types by using fractional extended Riemann-
Liouville integrals. It uses well-known mathematical tools like Jensen-Mercer, power-mean, and Holder
inequalities to prove the results. The paper also shows how these new results relate to earlier research and
includes examples with graphs to explain and confirm the findings. Further the article [1] introduces im-
proved versions of this inequality, using advanced concepts like 4-convex functions and Green functions.
These improvements are developed for both sums (discrete forms) and integrals which make this inequal-
ity, its related versions, and the Jensen-Steffensen inequality, more precise. The article also enhances their
reverse forms, leading to better ways to calculate key mathematical quantities such as different kinds of
averages (power, geometric, and quasi-arithmetic means), the Hermite-Hadamard gap (which measures
approximation errors), and the Holder inequality. Additionally, these improved inequalities are used to
find more accurate results for comparing data distributions (divergences) and for a concept in data anal-
ysis known as Zipf-Mandelbrot entropy. The article [18] discusses conditions that a real-valued function
must meet to be considered preinvex. It also explains some features of preinvex functions and introduces
new forms of Jensen’s integral inequality for these functions. Several examples are included to understand
the concepts. Furthermore, the article [12] explains a way to improve the integral Jensen inequality for
finite signed measures using a concept called integral majorization inequalities. The method is unique for
the conditions discussed and gives new ideas for working with measures. It also introduces specific im-
provements, including links to Jensen-Steffensen’s inequality, and presents a new, extended version of this
inequality. These results make it easier to apply and understand such inequalities. The contents presented
in [9] enhance the Jensen inequality by using the concepts of majorization and convexity. The improved
inequality leads to more precise bounds for power means and quasi-arithmetic means. The study also
uses these refinements to derive bounds for divergences, Shannon entropy, and distance measures in the
context of probability distributions. These bounds offer useful understandings for practical applications.
This paper [10] expands on a method called cyclic refinement of the discrete Jensen inequality and ap-
plies it to integrals. It introduces a new way to improve the integral version of the inequality, which
also includes some recent improvements as specific examples. These refined results are then applied to
well-known inequalities, like the Fejér and Hermite-Hadamard inequalities, as well as to quasi-arithmetic
means and f-divergences, showing their practical value. Similarly, the paper [20] presents a new way to
improve the integral Jensen inequality using specific functions. It applies this improvement to various
types of means, leading to new versions of the Hermite-Hadamard and Holder inequalities. The paper
also shows how this refined inequality can be used in information theory, such as in calculating entropy
and divergences. At the end, a more general version of the refinement is introduced, making it applica-
ble to a wider range of functions. This approach highlights the broader usefulness of the refined Jensen
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inequality in different areas of mathematics. Finally, the article [21] enhances the classical Jensen inequal-
ity by applying finite real sequences. This improvement leads to new inequalities for various means and
also provides inequalities for Csiszar-divergence, as well as Shannon and Zipf-Mandelbrot entropies. The
refinement is further expanded to include several finite real sequences, increasing its general applicability.

2. Main Results

The following notations will be used throughout the paper: A¢ = [u,V[\A and Wa = [ A W(x)dx,
where A is a proper subinterval of [u,v], and w : [u,v] — R is a positive function.

The main result for the generalized Jensen inequality in the Riemann sense is presented in the follow-
ing theorem.

Theorem 2.1. Let f : I — R be a convex function. Let w, g, h : [u,v] — R be some integrable functions such
that w(x), g(x) > 0 and h(x) € I for all x € [u,v] with [ g(x)dx = G and [, w(x)dx = W. Also, assume that
K, L, M are some proper subintervals of [u,v]. Then

f (1 Jv g(x)h(x)dx> gGi/V{WLGKf <fK g(x)h(x)dx> + W, Gef (I‘“ g(x)h(x)dx)

G ot Gk Gke
S WLGpmf <IM g(x)h(x)dx> WieGaef <IM° g(x)h(")d"> } 2.1)
GM GMc

<g | amron max

u

Proof. We start by noting that:

f (é E g(x)h(x)dx) =f J:w(x)dei/v J: g(x)h(x)dx)

< w(x)dx —&-J W(x)dx) ,[V g(x)h(x)dx)
L ¢ u

< p w(x)dx JV g(x)h(x)dx -l—J

u

oW ( . w(x)dx (JK g(x)h(x)dx —&-J' . g(x)h(x)dx)

w(x)de

u

g(x)h(x)dx))

C

oW (J'L w(x)dx J'K g(x)h(x)dx + JL w(x)de . g(x)h(x)dx 2.2)
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Applying the Jensen’s inequality to (2.2) gives:

1 1 [ g(x)h(x)dx)
f (G Ju g(x)h(x)dx) < oW (JLw(x)deK g(x)dxf( J.K o(x)dx

(x)dx
+ w(x)de g(x)de<chg(x)dx )

Im Q(X)h(X)dX)
g(x)dxf <IM o

2.3)

rv

Ju u

( " g(x)f(h(x))dx <Lw(x)dx+J . w(x)dx) )

g(x)f(h(x))dx JV W(X)dx)

J g(x) (foh) (X)dx) .
Thus we get the required refinement (2.1) of Jensen inequality, the refined term can be seen in (2.3). [

The next corollary delivers a more refined form of the Holder inequality:

Corollary 2.2. Let p,q are real number greater than 1 with %—l—% = 1. Also, let w,g1,92 : [u,v] = R be

positive functions such that g (x), gg (x), 91(x).g2(x) are integrable functions and W = f:i w(x)dx. The following
inequality holds by further assuming that K, L, M are some proper subintervals of [u,V].

J“gl(X)QZ(X)dX<{Wﬁgﬁ'(x)dx (WLJng (x)dx( J g5 (x)dx

Jxe 91(x)ga(x)dx\ P Jm 91(x)ga(x)dx\?
q q
+WLJKC % (x)dx( ch QS(X)dx ) Wi JM % (x)dx( IM gg(x)dx )

P % v
+WLCJ gf(x)deM"gl(X)gZ(x)dX) )} J gd (x)dx

Mc IMC 9; (x)dx u

(o)’ ([t

(2.4)
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Proof. Employing the convex function f(x) = xP, x > 0, p > 1 in (2.1) and substituting g(x) by g, (x) and
=9
h(x) by g1(x)g,” (x), we get the following inequality

[Loi¥g0dax\™ 1 q <IKgl(x)gz(x)dx>P
( fugz ) <Wfﬁg§(x)dx{WLL92(")d" T 93 (x)dx
+WLJ gg(x)dx<IK° 91(")92(")‘1">p

Ke J‘KC gg dx
d P
—l—WLcJ g, (x)dx <IM 91)92(x) X)
M IM 92 x)dx

Jme a1l )2(X)dx>p
. q

W J %2 (X)dx< Jme 97 (x)dx
f 91

Igz
1

Multipl.y%ng‘the above inequality by ([ g5 (x)dx)]D and then taking power -, we obtain the required
inequalities in (2.4). O

The following corollary provides another refined inequality of the Holder inequality:

Corollary 2.3. Let p, q € R. Also, assume that w, gl, g2 : [u,v] — R are positive functions such that g¥ (x), g5 (x),
and g1.go(x) are integrable functions and W = [ w(x)dx. Further assuming that K, L, M are some proper subin-
tervals of [u, V], then the following inequality holds

L g1(x)ga(x)dx < vlv{WL ((JK g‘f(dex) ' (JK 97 (x)dx) "4 (JK g‘f(dex) ' (JK 97 (x)dx) q)
+Wie ((J gf (x)dx) ’ (J gg (X)dX) a + (J g‘f(x)dx) ’ (J gg (x)dx) q) } (2.5)
M M Me Me
< (] stmax)" (| smax) ™.
(ii). The following inequality holds for 0 <p <1, and q = L
| 1920 > 1{WL ((j oF (x de) (] o2 dx) (] o X>; (] gq(dex>é>
u - w K ! Ke 2
+Wie ((J gy (x)dx) ( dx) + ( dx)p (J gg (x)dx>q> } (2.6)
M Me
> (] sroax)” ([ o5tx )dx)

(iii). The inequality in (2.6) again holds for p < 0, and q = ;P.

(i). The following inequality holds for p > 1, and q = ﬁ.

Proof.

(i). Using the concave function f(x) = x%, x > 0 in (2.1) and substituting g(x) by gg(x) and h(x) by
g7 (x)gz_q (x), we get the desired result (2.5).
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(ii). In this case the function f(x) = x? becomes convex, thus using (2.1) for this function and substituting
g(x) by g5 (x) and h(x) by g} (x)g, 4 (x), we get the result in (2.6).

(iii). Given the specified conditions on p and q, it is evident that 0 < q < 1, implying that this scenario
represents a reflection of Case ii. Thus, substituting p, q, g1, g> with q,p, g2, g1. After looking into
the result, we see the same result as given in (2.6). O

The next corollary offers a more precise form of the Hermite-Hadamard inequality:

Corollary 2.4. Consider f : [u vl — R as a convex function, and let w : [u,v] — R denote a positive, integrable
function satisfying W = [ w(x)dx. The following inequality holds by further assuming that [ay, b1], [az, bal, and
L are some proper subintervals of u, vl

1 b 2 _ 12142 _p2
f<u+v> < ( [W]_(bl—(ll)f(al—l_ 1>+W]_((11—u+\)—b1)f< Gt i 1)

2 v—u)W 2 2(a; —u+v—"bq)
az + b a3 —w+v:—bj (2.7)
W c b — f W c — —b f .
+ Wie(by —ap) ( 5 )-i- Le(az —u+v—by) <2(a2—u+v—b2)
1 A%
< J f(x)dx
v—u ),
Proof. Substituting g(x) =1, h(x) = x, K = [a;, b1], M = [ap, by] in (2.1), we obtain (2.7) O

Definition 2.5. The following formula defines the power mean of order A € R for two positive integrable
functions g and h over the interval [u, v]:

1
T x)dx)",  A#0,
M (g h) = e<>;rpg(( jax }»v:)loggh( )dx >, X> A=0.

Also, if ] is a proper subinterval of [u, V], then

A
Ma(g/h,]) = (frateras [y s0Im iax) ™, A0,
" (flg 10gh() ) A =0
eXp J'Ig 7 — U.

The following corollary provides an estimate for power mean:

Corollary 2.6. Assuming that g and h are two positive integrable functions defined on [u,v], further with the
condition that K, L, M are some proper subintervals of [u, V], then for s, t such that t > s the following inequalities
for power mean exist

1
M,(g h) < [GW(WLGKM (g h, K) + WL Gye M (g, h, KE)
t (2.8)
+ WieGmML(g h, M) + WieGpe M (g h, Mc)ﬂ ‘
< Mi(g/h), t#0.
Ms(g h) <exp [ i/v(WLGKlogM (g h, K) + W Gk log M (g, h, K)
+ WicG log My (g h, M) + Wie Gue log M (g b, M©) )| (2.9)

< Mi(g h), t=0.
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1
[GW<WLGKMS(g,h K) + Wi Ge M (g, b, K€)
Wi GmME (g, h, M) + WieGmeME (g, h, MC))}
< Mt(g/ h)/ S ?é O

M;s(g h) <
s (2.10)

1
Ms(g h) <exp [ v

+ WieGmlog M (g, h, M) + Wi cGpme log M (g, h, MC))} (2.11)
< Mi(g,h), s=0.

(WLGKloth(g,h K) + Wi Gye log My (g, h, KS)

Proof. Assume that f(x) = xs for the given real numbers s and t with the condition that t > s. Also, we

have f”(x) = £ (£ —1) xs~2. Here we have exactly three cases, first t > 0,s < 0, second t > 0,s > 0, and

thirdt <0,s < 0. In the first and second cases, it is straightforward to verify that the function f is convex,
hence, we can apply (2.1) to this function with h — h® and finally taking the power 1, we get (2.8). I
the third case the assumed function becomes concave, hence this time using the mam result prov1ded in
inequality (2.1) for concave function, letting h — h*, and finally taking the power + for t < 0, we obtain
the same inequality (2.8).

Adopting the same procedure for the function f(x) = xt, x > 0, letting h — h' and taking power as
%, we obtain (2.10) using (2.1).

The inequalities in (2.9) and (2.11) can be deduced by taking t — 0 and s — 0 in (2.8) and (2.10)
respectively. O

Definition 2.7. For g as a positive and h as any integrable function defined on [u, V], and { as a strictly
monotone continuous function whose domain is contained within the image of h, the quasi-arithmetic
mean is defined as

My (g h) = P! (f\)g(lx)dxj g(x)xb(h(x))dx) .

Also, if ] is a proper subinterval of [u, V], then

My(gh ) =v" (fg(lx)dx L Q(X)lb(h(X))dX> :
J

The following corollary provides an inequality for quasi-arithmetic mean:

Corollary 2.8. Let g, h: [u,v] — R be integrable functions, where it is required that g(x) > 0, for each x € [u, v].
Assume that \p is a strictly monotone continuous function whose domain belong to the image of the function h. In
the case where p o P~ is convex, the following inequality holds true

P (Mlp (g,h)) Wi Gkp (Mq,(g,h K)) + WL Gkep (Mu,(g,h, KC))

o
+ WieGmp (My (g h,M)) + WieGmep (My (g h, M) (2.12)
1

Proof. Using (2.1) for h — P ohand f — p o !, we obtain the above inequality. O
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3. Applications in Information Theory

Information Theory helps us to understand how information is stored, shared, and compressed. This
notion was introduced by Claude Shannon in 1948 to explain how messages travel through noisy chan-
nels and how uncertainty can be measured using entropy. Key ideas include Shannon’s entropy, which
measures mutual information, and unpredictability, which shows how much two different things can
be shared in common. Most important concept is Csiszar divergence, which builds on Kullback-Leibler
divergence to compare different probability distributions as well as it can yield entropies directly by
manipulating certain substitutions [13]. These ideas are widely used in communication systems, data
compression, error correction, and cyber security. They also play a big role in artificial intelligence, neu-
roscience, and language processing. The following definition is from [16]:

Definition 3.1. Let [«, ] be a real-number interval, and let f : [&, ] — R be a function. Also let s : [u,v] —
[t B], t: [, v] — (0,00)
then given by

ig:g € [o, B] for all x € [u, V], the Csiszar divergence is

Dc(s, t) :J t(x)f (igg) dx.

Theorem 3.2. Let f: [, B] = R be a function. Assuming a positive function w : [u,v] — R and considering

that W = f x)dx. Further, assume that s : [u,v] — [, ] and t : [u,v] — (0,00) be two functions and
iE:; € [, B] for all x € [u,v]. Also, assuming that K, L, M are some proper subintervals of [u, V] then

v o s(x)dx 1 J s(x)dx Jxe s(x)
Lt(x)dxf <ﬁit(x)dx> gW{WLJ’ t(x )de<IK ) dx >+WLJ t(x )de<IKc ) >

)
)
+WLCJ ( )de (W) + Wi JMC ( )de <J‘MCS X d > } (31)

Jm tx)dx me t(x)
QDC(S, )

Proof. Putting h(x) = S(X;, g(x) = t(x), and [e, B] = I in (2.1), one can obtain (3.1). O

Definition 3.3. Given a positive density function t(x) on the interval [u, V], the Shannon entropy is calcu-
lated as

Se(t) =— JV t(x)log (t(x)) dx.

u
Corollary 3.4. Assuming a positive function w : [u,v] — R and considering that [, w(x)dx = W. Also,
t:uv] = (0,00) 1 t(lx) € [, Bl € RY for all x € [w,v]. Then the following
inequality holds by further assuming that K, L, M are some proper subintervals of [u, v].

L d ct(x)d
—log (v—u) <W{WL JK t(x)dxlog% +WLJ C t(x )dxlogIK(KC)X
Imt [pe t(x)dx (3.2)
#wie | waxiog PO (M) S| i )d"l"gW
< —Se(t).
Proof. Manipulating f(x) = —logx, x € [«, ], and s(x) =1, in (3.1), one get (3.2). =

Definition 3.5. For two positive density functions say s(x) and t(x) defined on [u, V], the Kullback-Leibler

divergence is given by
. v s(x
D](Qt) :J s(x)log (tEXD dx.
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Corollary 3.6. Assuming a positive function w : [u,v] — IR and considering that W = [ w(x)dx. Further,

assume that s, t are some densities defined on [u, V]
that K, L, M are some proper subintervals of [u,v] then

€ [«, Bl C R forall x € [u,v]. Also, assuming

1 J J s(x)dx J Jie s(x)dx

0< 4 W )dxlo +W s(x)dxlog T———

W{ L] st & tx)dx J tx)dx L Ke (x) & Je tix)dx
3.3
+ Wi J s(x)dxlog =——— IM stx)d + Wi e J s(x)dxlog +——— IM s(x) (3:3)

M J‘M (X Mce J‘Mc X
<Dy

Proof. Manipulating f(x) = xlogx, x € [«, ] in (3.1), one get (3.3). O

Remark 3.7. As above, similar inequalities for variational distance, Jeffrey’s divergence, Bhattacharyya
coefficients, and Hellinger distance can be established.

4. Conclusion

The article concludes by highlighting the significance of refining the generalized Jensen inequality
in the Riemann sense through a positive integrable function. This refined inequality framework serves
as a foundation for deriving enhanced versions of several classical inequalities. Appropriate function
manipulations and substitutions within this framework have enabled to establish new refined forms of
the Holder and Hermite-Hadamard inequalities, along with improvements to power and quasi-arithmetic
means, providing greater accuracy in these contexts.

Furthermore, the implications of the refined inequality extend to information theory and related fields
by yielding improved estimates for the Csiszar divergence, an important measure in probability and
statistics, as well as for its various specific forms. This advancement allows for more precise estimates
and tighter bounds in applications where Csiszar divergence and similar measures play a role, enhancing
analytical accuracy and potentially impacting broader areas where such inequalities are applied. The
study, therefore, not only contributes refined mathematical tools but also broadens the practical applica-
tions of these classical inequalities across different disciplines.
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