Best proximity point results on \(\mathcal{R}\)-metric spaces with applications to fractional differential equation and   production-consumption equilibrium
    
        
            
                Volume 38, Issue 1, pp 45--55
            
                        
                https://dx.doi.org/10.22436/jmcs.038.01.04
            
            
                                    
            
            
                
                    Publication Date: November 21, 2024
                
                                
                    Submission Date: August 21, 2024
                
                
                                
                    Revision Date: September 25, 2024
                
                
                                Accteptance Date: October 10, 2024
                            
                                 
        
     
    
    
    Authors
    
                G. Janardhanan
        
                                        - Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamilnadu, India.
                                        G. Mani
        
                                        - Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamilnadu, India.
                                        Z. D. Mitrović
        
                                        - Faculty of Electrical Engineering, University of Banja Luka, Patre 5, Banja Luka, 78000, Bosnia and Herzegovina.
                                        A. Aloqaily
        
                                        - Department of Mathematics and Sciences, Prince Sultan University Riyadh, 1158, Saudi Arabia.
                                        N. Mlaiki
        
                                        - Department of Mathematics and Sciences, Prince Sultan University Riyadh, 1158, Saudi Arabia.
                                    
        
    Abstract
    In this article, we introduce the notion of best proximity point in \(\mathcal{R}\)-metric space. We prove the best proximity result in \(\mathcal{R}\)-metric space and also given some examples to strengthen our obtained results. Finally, an application to fractional differential equation and an application to production-consumption equilibrium are given. 
 
    
    
    Share and Cite
    
        
        
            ISRP Style
                                                                                                                                                            G. Janardhanan, G. Mani, Z. D. Mitrović, A. Aloqaily, N. Mlaiki, Best proximity point results on \(\mathcal{R}\)-metric spaces with applications to fractional differential equation and   production-consumption equilibrium, Journal of Mathematics and Computer Science, 38 (2025), no. 1, 45--55
         
        
            AMA Style
                                                                                                                                                            Janardhanan G., Mani G., Mitrović Z. D., Aloqaily A., Mlaiki N., Best proximity point results on \(\mathcal{R}\)-metric spaces with applications to fractional differential equation and   production-consumption equilibrium. J Math Comput SCI-JM. (2025); 38(1):45--55
         
        
        
            Chicago/Turabian Style
                                                                                                                                                            Janardhanan, G., Mani, G., Mitrović, Z. D., Aloqaily, A., Mlaiki, N.. "Best proximity point results on \(\mathcal{R}\)-metric spaces with applications to fractional differential equation and   production-consumption equilibrium." Journal of Mathematics and Computer Science, 38, no. 1 (2025): 45--55
         
     
            
    Keywords
    
                -  Fixed point
-  fractional differential equation
-  best proximity point
-  dynamic market equilibrium problem
-  \(\mathcal{R}\)-contraction
-  \(\mathcal{R}\)-metric space
    MSC
    
    
        
    References
        
                - 
            [1]
            
                                A. Abkar, M. Gabeleh, Best proximity points of non-self mappings, TOP, 21 (2013), 287–295
                            
            
        
                - 
            [2]
            
                                A. S. Anjum, C. Aage, Common fixed point theorem in F-metric spaces, J. Adv. Math. Stud., 15 (2022), 357–365
                            
            
        
                - 
            [3]
            
                                M. Asadi, E. Karapınar, P. Salimi, New extension of p-metric spaces with some fixed-point results on M-metric spaces, J. Inequal. Appl., 2014 (2014), 9 pages
                            
            
        
                - 
            [4]
            
                                M. I. Ayaria, H. Aydi, H. Hammouda, A best proximity point theorem for C-class-proximal non-self mappings and applications to an integro-differential system of equations, Filomat, 37 (2023), 4725–4742
                            
            
        
                - 
            [5]
            
                                S. S. Basha, Extensions of Banach’s contraction principle, Numer. Funct. Anal. Optim., 31 (2010), 569–576
                            
            
        
                - 
            [6]
            
                                S. S. Basha, Best proximity point theorems on partially ordered sets, Optim. Lett., 7 (2013), 1035–1043
                            
            
        
                - 
            [7]
            
                                S. S. Basha, N. Shahzad, R. Jeyaraj, Common best proximity points: global optimization of multi-objective functions, Appl. Math. Lett., 24 (2011), 883–886
                            
            
        
                - 
            [8]
            
                                M. Dhanraj, A. J. Gnanaprakasam, G. Mani, O. Ege, M. De la Sen, Solution to integral equation in an O-complete Branciari b-metric spaces, Axioms, 11 (2022), 1–14
                            
            
        
                - 
            [9]
            
                                K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 112 (1969), 234–240
                            
            
        
                - 
            [10]
            
                                A. George, P. Veeramani, On Some Result in Fuzzy Metric Space, Fuzzy Sets and Systems, 64 (1994), 395–399
                            
            
        
                - 
            [11]
            
                                S. K. Jain, G. Meena, D. Singh, J. K. Maitra, Best proximity point results with their consequences and applications, J. Inequal. Appl., 2022 (2022), 16 pages
                            
            
        
                - 
            [12]
            
                                M. Joshi, A. Tomar, T. Abdeljawad, On fixed points, their geometry and application to satellite web coupling problem in S−metric spaces, AIMS Math., 8 (2023), 4407–4441
                            
            
        
                - 
            [13]
            
                                E. Karapınar, ˙I. M. Erhan, Best proximity point on different type contractions, Appl. Math. Inf. Sci., 5 (2011), 558–569
                            
            
        
                - 
            [14]
            
                                S. Khalehoghli, H. Rahimi, M. Eshaghi Gordji, Fixed point theorems in R-metric spaces with applications, AIMS Math., 5 (2020), 3125–3137
                            
            
        
                - 
            [15]
            
                                A. Latif, R. F. A Subaie, M. D. Alansari, Fixed points of generalized multi-valued contractive mappings in metric type spaces, J. Nonlinear Var. Anal., 6 (2022), 123–138
                            
            
        
                - 
            [16]
            
                                G. Mani, A. J. Gnanaprakasam, O. Ege, A. Aloqaily, N. Mlaiki, Fixed point results in C∗-algebra-valued partial b-metric spaces with related application, Mathematics, 11 (2023), 9 pages
                            
            
        
                - 
            [17]
            
                                G. Mani, G. Janardhanan, O. Ege, A. J. Gnanaprakasam, M. De la Sen, Solving a Boundary Value Problem via Fixed-Point Theorem on R-Metric Space, Symmetry, 14 (2022), 11 pages
                            
            
        
                - 
            [18]
            
                                Z. Mustafa, V. Parvaneh, M. Abbas, J. R. Roshan, Some coincidence point results for generalized (y, f)-weakly contractive mappings in ordered G-metric spaces, Fixed Point Theory Appl., 2013 (2013), 23 pages
                            
            
        
                - 
            [19]
            
                                Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Some common fixed point results in ordered partial b-metric spaces, J. Inequal. Appl., 2013 (2013), 26 pages
                            
            
        
                - 
            [20]
            
                                K. Muthuvel, K. Kaliraj, K. S. Nisar, V. Vijayakumar, Relative controllability for ψ-Caputo fractional delay control system, Results Control Optim., 16 (2024), 16 pages
                            
            
        
                - 
            [21]
            
                                K. S. Nisar, A constructive numerical approach to solve the Fractional Modified Camassa–Holm equation, Alex. Eng. J., 106 (2024), 19–24
                            
            
        
                - 
            [22]
            
                                G. Poonguzali, V. Pragadeeswarar, M. De la Sen, Existence of Best Proximity Point in O-Complete Metric Spaces, Mathematics, 11 (2023), 9 pages
                            
            
        
                - 
            [23]
            
                                V. Pragadeeswarar, G. Poonguzali, M. Marudai, S. Radenovi´c, Common best proximity theorem for multivalued mappings in partially ordered metric spaces, Fixed Point Theory Appl., 2017 (2017), 14 pages
                            
            
        
                - 
            [24]
            
                                J. B. Prolla, Fixed point theorems for set valued mappings and existence of best approximations, Numer. Funct. Anal. Optim., 5 (1983), 449–455
                            
            
        
                - 
            [25]
            
                                A. Rezazgui, A. A. Tallafha, W. Shatanawi, Common fixed point results via Aν − α−contractions with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space, AIMS Math., 8 (2023), 7225–7241
                            
            
        
                - 
            [26]
            
                                V. M. Sehgal, S. P. Singh, A theorem on best approximations, Numer. Funct. Anal. Optim., 10 (1989), 181–184
                            
            
        
                - 
            [27]
            
                                W. Shatanawi, T. A. M. Shatnawi, New fixed point results in controlled metric type spaces based on new contractive conditions, AIMS Math., 8 (2023), 9314–9330
                            
            
        
                - 
            [28]
            
                                A. A. Thirthar, H. Abboubakar, A. L. Alaoui, K. S. Nisar, Dynamical behavior of a fractional-order epidemic model for investigating two fear effect functions, Results Control Optim., 16 (2024), 21 pages