Results on fixed points and common fixed points on bipolar \(\mathfrak{b}\)-metric space with applications
Authors
G. Mani
- Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India.
S. S. Ramulu
- Department of Mathematics, S.A. Engineering College, Chennai-600077, Tamil Nadu, India.
S. Aljohani
- Department of Mathematics and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia.
Z. D. Mitrovic
- Faculty of Electrical Engineering, University of Banja Luka, Patre 5, 78000 Banja Luka, Bosnia and Herzegovina.
N. Mlaiki
- Department of Mathematics and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia.
Abstract
In this paper, we present the concept of bipolar \(\mathfrak{b}\)-metric spaces and establish both fixed point and common fixed point theorems within this framework. Our results broaden and extend several well-known findings in the existing literature. To illustrate the applicability of our theorems, we provide a detailed example and a relevant application.
Share and Cite
ISRP Style
G. Mani, S. S. Ramulu, S. Aljohani, Z. D. Mitrovic, N. Mlaiki, Results on fixed points and common fixed points on bipolar \(\mathfrak{b}\)-metric space with applications, Journal of Mathematics and Computer Science, 37 (2025), no. 3, 274--286
AMA Style
Mani G., Ramulu S. S., Aljohani S., Mitrovic Z. D., Mlaiki N., Results on fixed points and common fixed points on bipolar \(\mathfrak{b}\)-metric space with applications. J Math Comput SCI-JM. (2025); 37(3):274--286
Chicago/Turabian Style
Mani, G., Ramulu, S. S., Aljohani, S., Mitrovic, Z. D., Mlaiki, N.. "Results on fixed points and common fixed points on bipolar \(\mathfrak{b}\)-metric space with applications." Journal of Mathematics and Computer Science, 37, no. 3 (2025): 274--286
Keywords
- Bipolar \(\mathfrak{b}\)-metric space
- fixed point
- covariant map
- contravariant map
MSC
References
-
[1]
I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37
-
[2]
M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Stud. Univ. Babe¸s- Bolyai Math., 54 (2009), 3–14
-
[3]
M. Bota, A. Molnar, C. Varga, On ekeland’s variational principle in bmetric spaces, Fixed Point Theory Appl., 12 (2011), 21–28
-
[4]
S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11
-
[5]
S. Czerwik, Non-linear set valued contraction mappings in b-metric spaces, Atti Semin Mat Fis Univ Modena., 46 (1998), 263–276
-
[6]
A. Das, B. Hazarika, S. Abbas, H. K. Nashine, A. Deep, Existence of soultions of fractional hybrid differential equaitons via measure of noncompactness, Rocky Mountain J. Math., 54 (2024), 439–449
-
[7]
A. Deep, M. Kazemi, Solvability for 2D non-linear fractional integral equations by Petryshyn’s fixed point theorem, J. Comput. Appl. Math., 444 (2024), 11 pages
-
[8]
Y. U. Gaba, M. Aphane, H. Aydi, (, BK)-contractions in bipolar metric spaces, J. Math., 2021 (2021), 6 pages
-
[9]
U. Gürdal, A. Mutlu, K. Özkan, Fixed point results for - -contractive mappings in bipolar metric spaces, J. Inequal. Spec. Funct., 11 (2020), 64–75
-
[10]
M. Joshi, A. Tomar, T. Abdeljawad, On fixed points, their geometry and application to satellite web coupling problem in S-metric spaces, AIMS Math., 8 (2023), 4407–4441
-
[11]
T. Kamran, M. Samreen, Q. UL Ain, A generalization of b-metric space and some fixed point theorem, Mathematics, 5 (2017), 1–7
-
[12]
R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71–76
-
[13]
M. Kazemi, A. Deep, A. Yaghoobnia, Application of fixed point theorem on the study of the existence of solutions in some fractional stochastic functional integral equations, Math. Sci. (Springer), 18 (2024), 125–136
-
[14]
G. N. V. Kishore, R. P. Agarwal, B. S. Rao, R. V. N. S. Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory Appl., 2018 (2018), 13 pages
-
[15]
G. N. V. Kishore, D. R. Prasad, B. S. Rao, V. S. Baghavan, Some applications via common coupled fixed point theorems in bipolar metric spaces, J. Crit. Rev., 7 (2019), 601–607
-
[16]
G. N. V. Kishore, K. P. R. Rao, H. I¸sık, B. S. Rao, A. Sombabu, Covarian mappings and coupled fixed point results in bipolar metric spaces, Int. J. Nonlinear Anal. Appl., 12 (2021), 1–15
-
[17]
G. N. V. Kishore, K. P. R. Rao, A.Sombabu, R. V. N. S. Rao, Related results to hybrid pair of mappings and applications in bipolar metric spaces, J. Math., 2019 (2019), 7 pages
-
[18]
K. Mehmet, H. Kiziltune, On some well known fixed point theorems in b-metric space, Turkish J. Anal. Number Theory, 1 (2013), 13–16
-
[19]
A. Mutlu, U. Gürdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362–5373
-
[20]
A. Mutlu, K. Özkan, U. Gürdal, Coupled fixed point theorems on bipolar metric spaces, Eur. J. Pure Appl. Math., 10 (2017), 655–667
-
[21]
A. Mutlu, K. Özkan, U. Gürdal, Locally and weakly contractive principle in bipolar metric spaces, J. Appl. Eng. Math., 10 (2020), 379–388
-
[22]
M. P˘acurar, Sequences of almost contractions and fixed points, Carpathian J. Math., 24 (2008), 101–109
-
[23]
B. S. Rao, G. N. V. Kishore, G. K. Kumar, Geraghty type contraction and common coupled fixed point theorems in bipolar metric spaces with applications to homotopy, Int. J. Math. Trends Technol., 63 (2018), 25–34
-
[24]
A.-Z. Rezazgui, A. A. Tallafha, W. Shatanawi, Common fixed point results via A--contractions with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space, AIMS Math., 8 (2023), 7225–7241
-
[25]
W. Shatanawi, T. A. M. Shatnawi, New fixed point results in controlled metric type spaces based on new contractive conditions, AIMS Math., 8 (2023), 9314–9330
-
[26]
B. Ramalingam, O. Ege, A. Aloqaily, N. Mlaiki, Fixed-Point Theorems on Fuzzy Bipolar b-Metric Spaces, Symmetry, 15 (2023), 1–17