M. Ahmad - Department of Mathematics , Presidency University, School of Engineering, Coimbatore- 641 407, Bangalore, 560064, India . M. I. Idrisi - Department of Mathematics, University Institute of Sciences, Chandigarh University, 140413, India. A. K. Sirohi - School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
Kostyrko et al. initiated the concept of ideal convergence in [P. Kostyrko, T. Šalát, W. Wilczyński, Real Anal. Exchange, \(\bf 26\) (2000), 669--686]. The purpose of this paper is to introduce and define spaces of the neutrosophic convergent sequence via ideal, namely \(^{I}\mathcal{S}_{\mathcal{M}}\) and \(^{I}\mathcal{S}_{\mathcal{M}_{0}}\). We prove that new spaces are linear and Hausdorff topological spaces. Further, we examine the relation between \(I\)-Cauchy and \(I\)-convergent sequences and show that every separable space \(^{I}\mathcal{S}_{\mathcal{M}}\) is second countable. Moreover, we prove that the space \(^{I}\mathcal{S}_{\mathcal{M}}\) is complete.
M. Ahmad, M. I. Idrisi, A. K. Sirohi, Generalized neutrosophic ideal convergent sequence spaces, Journal of Mathematics and Computer Science, 30 (2023), no. 4, 332--339
Ahmad M., Idrisi M. I., Sirohi A. K., Generalized neutrosophic ideal convergent sequence spaces. J Math Comput SCI-JM. (2023); 30(4):332--339
Ahmad, M., Idrisi, M. I., Sirohi, A. K.. "Generalized neutrosophic ideal convergent sequence spaces." Journal of Mathematics and Computer Science, 30, no. 4 (2023): 332--339