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Abstract

Kostyrko et al. initiated the concept of ideal convergence in [P. Kostyrko, T. Salat, W. Wilczyniski, Real Anal. Exchange, 26
(2000), 669-686]. The purpose of this paper is to introduce and define spaces of the neutrosophic convergent sequence via ideal,
namely !S5 and ISy,. We prove that new spaces are linear and Hausdorff topological spaces. Further, we examine the relation

between I-Cauchy and I-convergent sequences and show that every separable space '8y is second countable. Moreover, we
prove that the space 18y is complete.
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1. Introduction

The theory named as fuzzy theory initiated by Zadeh [22] in 1965 since then, fuzzification of various
classical theories have been made. In 1986, Atanassov [1] generalized fuzzy sets and introduced concepts
of intuitionistic fuzzy (IF) sets. Park [17] analyzed the intuitionistic fuzzy topological spaces. Saadati
and Park [18] further examined the intuitionistic fuzzy normed linear spaces. Recently, Smarandache [20]
extended the intuitionistic fuzzy sets and introduced the notion known as neutrosophic sets (NS). This
notion is more flexible and effective because it handles, besides independent components, also partially
independent and partially dependent components, while intuitionistic fuzzy sets cannot deal with these.
Moreover, Bera and Mahapatra [2] studied neutrosophic soft linear space and examined convexity and
Cauchy sequences. Kirisci [11] introduced neutrosophic normed spaces and studied statistical conver-
gence on it. Khan et al. [8, 10] analyzed the continuous, bounded linear operator and Fibonacci matrix in
neutrosophic normed spaces.

Fast [5] and Steinhaus [21] independently introduced statistical convergence of sequences of real num-
bers. Later on, Kostyrko et al. [12] generalized this concept and introduced I-convergence. Esi [3] ana-
lyzed strongly summable double sequence spaces in n-normed spaces defined by ideal convergence and
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an Orlicz function. Hazarika and Esi [6] further examined theLacunary ideal summability and its ap-
plications to approximation theorems. Mursaleen and Mohiuddine [13, 14] studied ideal and statistical

convergence of sequences in IF-normed space. Several researchers examined these theories in different
areas (see, [4,7,9, 15, 16, 19]).
Now, Recalling some basic notion, definitions and remarks.

Definition 1.1 ([12]). Suppose W be a non-void set. A family of subsets I of the power set 2" is known
as an ideal if () € I, for each I, I, € Timplies I; UI, € T and for each I € I, I, C I; implies I, € L.

Definition 1.2 ([12]). Suppose W be a non-void set. Then a family of subsets F of 2"V is said to be a
filter on W if and only if § ¢ &, for F;,F, € Fwehave F1NF, € F and for each F; € Fand F, D
J1 implies 5, € J.

Remark 1.3 ([12]). For evry ideal I there is a filter corresponding to I such that
FIO={TCN:T eIl

Definition 1.4 ([12]). A sequence w = (wy) is called I-convergent to a number L if, for each € > 0, there
exists a positive integer IN such that, the set

{keN: iw—L|>elel

Definition 1.5 ([17]). A binary operation x on [0,1] is said to be a continuous t-norm if % is associative
and commutative and it satisfies the following conditions

(i) di %1 =d; forall d; € [0,1];
(i) di *dy < d3x dyg, whenever d; < ds and d; < dy, for each d4, dy, ds, ds € [0,1].

Definition 1.6 ([17]). A binary operation ¢ on [0, 1] is said to be a continuous t-conorm if ¢ is associative
and commutative and it satisfies the following conditions

(i) dyo0=d; forall d; € [0,1];
(ii) dj o dy < ds ¢ dyg, whenever d; < d3 and d; < dy4 for each dq, dp, d3, dg € [0, 1].

Remark 1.7 ([17]). The relation between t-norm and t-conorm which are as follows, if one select 0 <
dq, dz <1 for d; > dp, then there exist 0 < dsz, d4 < 1 in such a way that d; x d3 > dp, d; > d4 ¢ d. Further,
if one select ds € (0,1), then there exist dg, d7 € (0,1) in such a way that d¢ * d¢ > ds and dy ¢ dy < ds.

Definition 1.8 ([20]). Suppose § be a subset of a universe of discourse W. Then,
S ={<w,Pw),o(w),R(w) >w e W},

where, neutrosophic component P(w) denotes the degree of truth-membership, Q(w) denotes degree of
indeterminacy-membership, and R(w) denotes the degree of false-nonmembership, respectively, such that
0<Pw)+9w)+2P(w) <3.

Definition 1.9 ([11]). Take W as a vector space and M : W x (0,00) — [0,1] be a norm. Assume * and
o be the continuous t-norm and t-conorm, respectively, then, the four-tuple (W, M, x,¢) is known as
neutrosophic normed space (NNS) if the subsequent conditions are hold; for all w,z € Wand t,s > 0:

(1) 0 < P(w, t), Qw,t), Rw,t) <1;
(ii) O<iP(w t)+ 9w, t) + R(w, t) < 3;
(iii)) P(w,t) =0 for t <O0;

(vi) (wt)—lfort>01ffw 0;

(v) Plew,t) = P(x ,Ve#0, t>0;

X \C\
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(vi) Pw,t) *xP(z,8) < Pw+z,t+s);

(vii) P(w, ) is non-decreasing continuous function for t > 0, tan;o Pw,t) =1;
(viii) Q(w,t) =1 fort < 0;

(ix) Q(w,t) =0 fort > 0iff w=0;

(x) Qow, t) = Q(w, %‘), c #0;

(xi) Q(w,t)0Q(z,8) = Qw+2z,t+5s);

(xii) Q(w, ¢) is non-increasing continuous function, tli_>rro1O Q(w,t) =0;
(xiii) R(w,t) =1fort <0;
(xiv) Rw,t) =0fort > 0iff w=0;

(xv) R(cw,t) = R(w, ﬁ), V¢ #0;
(xvi) Rw,t)oR(z,8) = Rw+2z,t+s);
(xvii) R(w,¢) is non-increasing continuous function, lim R(w,t) = 0.

t—o0

In this case M = (P, Q, R) is called a neutrosophic norm.

Example 1.10 ([11]). Suppose (W, || . ||) be a normed space. Give the operations as wxz = w +z —wz and
w oz = min(w, z). For t > |[w]|,

t [[wll

w
_ Y o= il
t 4 [[w| t+ |lwl]

, Rw,t) = .

P(w,t)

for all w,z € W and 0 < t. If one take t < ||[w]|, then P(w,t) =0, Q(w,t) = 1 and R(w, t) = 1. Therefore,
(W, M, %,0) is NNS.

Definition 1.11 ([11]). Let (W, M, %,¢) be NNS. Then a sequence w = (wy) is called convergent to L € W
with respect to the M if, for every e > 0 and t > 0, there exists kg € IN such that P(wy, —L,t) >1—¢,
Qwx —L,t) < e and R(wy —L,t) < € for all k > k.

Definition 1.12 ([11]). Let (W, M, x,¢) be a NNS. Then a sequence w = (wy) is said to be a Cauchy
with respect to the M if, for every e > 0 and t > 0, there exists kg € IN such that P(wy —w,t) > €,
Q(wr —wy,t) < € and R(wyx —wy, t) < e forall k,1 > k.

2. Main results

In this paper, we introduce and define new sequence spaces with the help of neutrosophic normed
space and ideal which are as follows

1§ = {(wk) €l ke N:Pwp—Lt)<1—eorQwyr—Lt)>e Rwp—L,t) > e}} €l

I8, = {(wk) €l (ke N:Pwi,t) <1—eorQwg,t) > e Rw,t) > e}} €L
The open ball with radius y and center w with respect to t is defined as follows:
Owlv,t) = {(Zk) €loo :{k e N : Pwy — 2z, t) <1—€or Qwy —zk, t) = €, R(wy — 2z, t) > e}}.

Theorem 2.1. The spaces 'Sy and 8y, are linear over R.

Proof. Assume w = (wWy),z = (zy) € IS¢ and «, B be scalars. Then for a given € > 0, one obtains

Ay = {ke N : ?(wk—l_l,ﬁ) <l—eor Q(wk—l_l,ﬁ) > e, R(wk—Ll,ﬁ> > e},
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Ay = {k eN: i]’(zk—l_z,ﬁ> <l—eor Q(zk—l_z,ﬁm) > ¢, fR(zk—Lz,ﬁ> > e}.
Therefore

AS = {k eN: ?(wk—l_l,ﬁ> >1—eor Q(wk—l_l,ﬁ) <e, fR(wk—Ll,ﬁ> < e}

AS = {KE€N:P(2c— Lo zlyy) > 1-eor Q(zi—Lozly) <& R(zi—Lagly) <€}

Determine set A3 = Aj U A,, therefore it implies that the set A§ is a non-void set . One shall prove
that for each (wy), (zi) € 18n,

A§ C {k e IN: P((oowy + Bzi) — (g + BL2),t) >1—€ or
Q((oowy + Bzr) — (a1 + BLy), 1) < € or R((awy + Bz ) — (a1 + BLo), 1) < e}.

Let m € A§. In this case

t t
T(wm—l_l,i) >1—e€or Q(wm—l_l,7> <eorR(wm—L1,7
2] x| 2| o

and

fP( — Ly, —eor Q(zm L, ——— ) < eor fR(wm—Ll,i

ZIBI> 2|f3|

We have
?(ocwm +Bzm —aly +BLy, ) T(alphawm alq, %) *‘P(me — By, %)

= fP(wm—Ll,2|t(x|> *fP(wm—Lz,2|tB|>

2
:Q(wm L1,2| |><>Q<wm—l_2,2|tﬁ|)<e<>e €,

fR(ocwm + Pzm — ol + BLy, ) < fR(cxwm —«aly, 7) oﬂQ(me BLy, %)
:iR(wm 1,2| |)<>J%(wm L2,2|t6|><e<>e—e

This implies that
£ C {k e IN: P((oowy + PBzi) — (g + BLy),t) >1—€ or
Q(oawy + Bzi) — (alg + Bla), 1) < € R((awy + Bzi) — (aly + Bla), 1) < e}.

Therefore, the space IS+ is linear over R.
On a similar manner, one can prove that the space '8y, is linear over RR. O

Theorem 2.2. In the space IS, every open ball O.,(7y,t) is an open set.

Proof. Given that O,, (v, t) be an open ball with center w, therefore

Ow(y,t) = {zk €l (KeN:Pwy —zi,t) <1—eor Qwy —2zi, t) > €, R(wy — 21, 1) > e}}.
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Assume that z € 05, (y,t). Then P(wy —zy,t) > 1—v, Qwx —zk, t) <7y, and R(wg —zy, t) < y. Since
Pwy —z,t) > 1 —7y, there exists tg € (0,t) such that P(wy — 2z, ty) > 1—7v and Q(wy — 2y, o) < V.
Putting vo = P((wk) — (zx), to), one obtains yp > 1 —, there exists s € (0,1) in such a way that yo >
1—s>1—v.Forvyy>1—s,one gets vy, y2 € (0,1) so that yoxy; >1—sand (1 —vyp) o (1 —7vo) < s. Put
Y3 = max{y1,Y2}. Consider the ball O$(1 —vy3,t—tp). One can show that

Let x = (xx) € Og(l —v3,t—tg), then P(wy —xy, t —1tg) > v3, Q(wx —xi, t — 1) < 1—7vy3, and R(wy —
Xk, t —tg) < 1—y3. Therefore

Plwi) = (z1), 1) = Pl(wi) — (xx), to) x P((zi) — (xi), t —to) = (voxvs) = (voxv1) = (1—s) > (1—7),
Qwy —zi, t) < Qwi —xk, to) 0 Qzk —xk, t —to) < (1 —vo) o (1 —7v3) < (1—7vo)o(1—7v2) <s <,
R(wi —zx, 1) < R(wi —xx, to) 0 Rz —xx, t —to) < (1 —vo)o(1—7v3) < (I —vo)o(1—v2) <s <.

Thus x € O, (v, t) and hence
0z(1—vy3,t—1to) C O3, (v, 1).
O

Remark 2.3. Let 1Sy be a neutrosophic normed space. Define 1y = {D c I8y : foreachw € D
there exists t > 0 and vy € (0,1) such that O,,(y,t) C D}. Then Ty is a topology on ISt

Remark 2 .4.

(i) From Theorem 2.2 and Remark 2.3, every neutrosophic norm M on 8y generates a topology Ty on
IS¢ which has a base as the family of open sets of the form {Ow (v,t):we I8y, ye(0,1),t> O}.

(ii) Since {(‘) k, k) =1,23,... } is a local base at w, the topology Tt on IS¢ is first countable.
Theorem 2.5. The spaces '8y and '8y, are Hausdorff.

Proof. We prove the result for 18y. Similarly the proof follows for 18y,. Let w,z € ISy such that
w#z Then0 < Plw—2z,1t) <1,0<Qw—z1t) <1land 0 < R(w—2z,t) < 1. Putting y; = P(w—2z,1),
Y2 = Q(w—2z,t) and y3 = R(w —z,t) and v = max{y1,1—vy2,1—y3}. For each yy € (v, 1), there exist y,4
and s such that y4 x5 > yo and (1 —vs5) ¢ (1 —vs) < (1 —7p). Putting v max{ys, 1 —ys} and considering
the open balls O, (1 —vg,3) and O(1 —1vs, 5), then clearly O, (1 —vg, 5) N OS(1—ve, 5) = (. For if there
exists x € 0%, (1—vs,5) NOS(1—s,3), then

t t
vlzﬂ’(w—z,t)2?(w—z,§)*ﬂ’(X—z,§)>v5W5 > Y3xY3 = Yo > Y1,
t t
szQ(w—z,t)<Q(w—x,§)<>9(x—z,§)<(1—V5) o(1—7v5) < (I—va)o(l—vs) <(1—7v0) <7v2
t t
Yo=RW—zt) <RW—-x,z)oR(x—2,5) <(1—=v5)0(1—=v5) < (1 —va)o(l—vs) <(1—70) <7V2

2 2

which is a contradiction. Hence, the space IS¢ is Hausdorff. O
Theorem 2.6. Every separable space '8y is second countable.

Proof. Given that the neutrosophic space 18y separable. Therefore X = {wy : k € N} is a countable dense
subset of W. Let § = {g(wl, oy ) :1,p € IN}. Therefore G is countable. One claims that G is a base for the
family of all open sets in W. Suppose V is an open set in W and let w € V. Then there exist t > 0 and
v € (0,1) such that g(w,vy,t) C V. Since y € (0,1), one can select s € (0,1) such a way that y > s¢s and
1-y<(1—-s)x(1—s). Assume m € N in such way that % < min{s, %}. Since X is dense in W, there
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/%/ %) Now if Zi € Q(Wir %/ %)/

(P(w—z,t) > T(w—wi,g) *(P(z—wi,§>

> T(w—wi,%>*?<z wl,%> (1—1)*(1—l> >(1—s)x(1—s)>1—v,

exists wi € X in such way that w; € g(w

Q(w—z,t)gQ(w—wi,g)oQ<z—w1,;) Q(w wl,%)oQ(z—wi,%><%0%<s<>5<y,
R(w—z,t) <R<w—wi,%><>fR(z—w1,t> R(w wl,n%><>ﬂz(z—wi,n%> <%o%<sos<y
Thus, z € g(w,v,t) C V and hence § is a base. O

Theorem 2.7. A sequence w = (wy) in 18y is I-convergent with respect to the neutrosophic norm (P, Q, R) if and
only if it is I-Cauchy with respect to same norm.

Proof.

Necessity: Let w = (wy) in 18y is I-convergent. Assume s > 0 in such a way that (1—s)x(1—s) >1—e¢
and € > s¢s. Then, for each t > 0, one has

B={ke N:Pwx—Lt)<1—sorQwx—Lt)>s,Rw,—L1t)>s}el
Therefore,
C={keN:Pw—Lt)>1—sorQwx—Lt)<s,Rwx—L,t) <s}e F(I).
Suppose m € B€. Then we obtain
Plwm—Lt)>1—s, Qwy—Lt)<s, and Rlwy, —L,t) <s

Let,
C={keN:Pwx—wn,t) <1l—€cor Qwr —wm,t) > ¢ Rwr —wpn,t) > €l

One have to prove that C C B. Take k € Q. We obtain

t t
=)= e/Q(Wk_WmIE

5 )

Pwx —wn, z) < 1—€or Q(wx —wn,

WV

E €.

There are two possible cases, firstly consider that P(wy —w,,t) < 1 — €. Therefore, one obtains P(wy —
L,3) <1—s, then k € B. On the contrary, if P(wx —L,5) > 1—s then

t

E)*iP(wm—L,E)>(1—s)*(1—s)>1—€,

1—e> T(Wk—wm,t) = {P(Wk_[-/z

which is not possible. Therefore, C C B.
Similarly, let Q(wyx —w, t) > € and R(wx —Wn, t) > €. Then we have Q(wy — L, %) > s and Q(wy —

L, §) > s, hence k € B. Otherwise, if Q(wx —L, %) < s and R(wy — L, 3) < s, then
t

t
f)oQ(wm—L,§)<s<>s<e

€ < 9wy —wn, t) < Qwy — L, >

and
t t
e < Rwx —wn, t) < R(wk—l_,i)oﬂl(wm—l_,i) <sos<eE,

which is impossible. Therefore, C C B. Hence, in both cases one concludes that C C B. Therefore C € L.
Therefore, w is a Cauchy with respect to neutrosophic norm (P, Q, R).
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Sufficiency: assume that w = (wy) is I Cauchy sequence with respect to neutrosophic norm (P, Q, R) but
not I-convergent. Then there exists p in such way that

B(e,t) ={k e N: P(wy —wp,t) <1—eor Qwi —wp,t) > €, Qwr —wp,t) > et el
and

Cle, t) = {ke N:ﬂ)(wk—l_,%) >1—¢and Q(wk—l_,g) <€,9Qwr—Lt) > e} el

Equivalently, C¢(e,t) € F(I). Since

t
‘:P(Wk—Wm,t) P ZT(Wk_I—/ E) >1-— €,

t
Q(Wk—Wp,t) < ZQ(Wk—L, 5) <E§€,

t
R(Wk—wp,t) < 2Q(Wk_L/ E) <€,

if Pw —L 1) > 15€, 9wy — L, §) < £, and R(wy — L, §) < £, respectively, one obtains B¢(e, t) € I and
so B(e, t) € F(I), which contradicts our assumption. O

Theorem 2.8. Let '8¢ be a neutrosophic normed space such that every Cauchy sequence in 'Sy has a convergent
subsequence. Then the space 'Sy is complete.

Proof. Let (wy,) be a subsequence of Cauchy sequence (wy) that converges to w. We show that (wy) — w
ask — oo. Lett >0and e € (0,1). Select s € (0,1) in a such way that (1—s)x(1—s) >1—eandsos < e.
Since (wy) is a Cauchy sequence, 3 Ny € N such that P(w, —wy, %) > 1—s5, Plwp —wy, %) < s and
Rwp —wy, %) < s for all p,k € Np. Since (wkq) — W, there is a positive integer q., > Np such that
Pwgn —w, 5) >1—5,9(wgq,, —w,5) <s,and R(wq,, —w, 5) < s. Then, if k > Ny,

Plwic—w, 1) > P —Wap, ) % Plwg,s —w, 2) > (1=s)x (1-5) > 1—¢,

2

Qwik —w, t) < Q(wx —Wqpj, 5) ©QAUwg, =W, 5) <sos <,

t t
2 2
t
2

Rwk —w, 1) < R(wk —wgq,.j, 7)o R(wgq,, =W, 5) <sos < e.

2
Therefore wy, — w as k — co. Hence the space 18y, is complete. O

3. Conclusion

In this paper, we provide researchers the spaces of all convergent sequences and null sequences via
ideal in a more general setting known as neutrosophic normed space. We proved that spaces are linear and
Hausdorff topological spaces. These spaces and results help in many branches of science and engineering.
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