\(q\)-Janowski type close-to-convex functions associated with a convolution operator
Volume 30, Issue 3, pp 272--280
http://dx.doi.org/10.22436/jmcs.030.03.06
Publication Date: February 02, 2023
Submission Date: April 24, 2022
Revision Date: August 31, 2022
Accteptance Date: December 02, 2022
Authors
S. G. A. Shah
- Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan.
S. Al-Sa'di
- Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan.
S. Hussain
- Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan.
S. Khan
- Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan.
M. Darus
- Department of Mathematical Sciences, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
Abstract
In this paper, we will discuss some generalized sub-classes of analytic
function related with close-to-convex functions in conic domains by using \(q\)
-calculus. We investigate some important properties such as necessary and
sufficient conditions, coefficient estimates, convolution results, linear
combination, weighted mean, arithmetic mean, radii of star likeness and
growth and distortion for these classes. It is important to mention that
our results are a generalization of several existing results.
Share and Cite
ISRP Style
S. G. A. Shah, S. Al-Sa'di, S. Hussain, S. Khan, M. Darus, \(q\)-Janowski type close-to-convex functions associated with a convolution operator, Journal of Mathematics and Computer Science, 30 (2023), no. 3, 272--280
AMA Style
Shah S. G. A., Al-Sa'di S., Hussain S., Khan S., Darus M., \(q\)-Janowski type close-to-convex functions associated with a convolution operator. J Math Comput SCI-JM. (2023); 30(3):272--280
Chicago/Turabian Style
Shah, S. G. A., Al-Sa'di, S., Hussain, S., Khan, S., Darus, M.. "\(q\)-Janowski type close-to-convex functions associated with a convolution operator." Journal of Mathematics and Computer Science, 30, no. 3 (2023): 272--280
Keywords
- Analytic functions
- subordination
- Noor integral operator
- \(q\)-conic domain
- \(q\)-Janowski functions
- close-to-convex functions
MSC
References
-
[1]
M. Acu, On a subclass of n-uniformly close-to-convex functions, Gen. Math., 14 (2006), 55–64
-
[2]
B. Ahmad, S. K. Ntouyas, Boundary value problems for q-difference inclusions, Abstr. Appl. Anal., 2011 (2011), 15 pages
-
[3]
J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. Math., 17 (1915), 12–22
-
[4]
M. Arif, M. Ul Haq, J.-L. Liu, A Subfamily of univalent functions associated with q-analogue of Noor integral operator, J. Funct. Spaces, 2018 (2018), 5 pages
-
[5]
F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1909), 253–281
-
[6]
W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math., 28 (1973), 297–326
-
[7]
S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336
-
[8]
S. Kanas, A.Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2002), 647–657
-
[9]
W. Kaplan, Close-to-convex Schlicht functions, Michigan Math. J., 1 (1952), 169–185
-
[10]
S. Mahmood, M. Arif, S. N. Malik, Janowski type close-to-convex functions associated with conic regions, J. Inequal. Appl., 2017 (2017), 14 pages
-
[11]
S. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor, S. M. J. Riaz, Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative, J. Funct. Spaces, 2018 (2018), 13 pages
-
[12]
M. Naeem, S. Hussain, S. Khan, T. Mahmood, M. Darus, Z. Shareef, Janowski type q-convex and q-close-to-convex functions associated with q-conic domain, Mathematics, 8 (2000), 14 pages
-
[13]
K. I. Noor, On new classes of integral operators, J. Natur. Geom, 16 (1999), 71–80
-
[14]
K. I. Noor, S. N. Malik, On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl., 62 (2011), 2209–2217
-
[15]
K. I. Noor, M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 (1999), 341–352
-
[16]
K. I. Noor, H. Owa, H. M. Srivistava, On some subclasses of close-to-convex functions, in: Univalent functions, fractional calculus, and their applications, 1989 (1989), 179–186
-
[17]
K. I. Noor, D. K. Thomas, Quasi-convex univalent functions, Int. J. Math. Math. Sci., 3 (1980), 255–266
-
[18]
W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (2), 48 (1943), 48–82
-
[19]
S. G. A. Shah, S. Hussain, A. Rasheed, Z. Shareef, M. Darus, Application of quasisubordination to certain classes of meromorphic functions, J. Funct. Spaces, 2020 (2020), 8 pages
-
[20]
S. G. A. Shah, S. Noor, S. Hussain, A. Tasleem, A. Rasheed, M. Darus, Analytic functions related with starlikeness, Math. Probl. Eng., 2021 (2021), 5 pages
-
[21]
H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of q-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 12 pages
-
[22]
K. G. Subramanian, T. V. Sudharsan, H. Silverman, On uniformly close-to-convex functions and uniformly quasiconvex functions, Int. J. Math. Math. Sci., 2003 (2003), 3053–3058
-
[23]
C. L. Yu, J. Wang, Existence of solutions for nonlinear second-order q-difference equations with first-order q-derivatives, Adv. Difference Equ., 2013 (2013), 11 pages
-
[24]
W.-X. Zhou, H.-Z. Liu, Existence solutions for boundary value problem of nonlinear fractional q-difference equations, Adv. Difference Equ., 2013 (2013), 13 pages