Caputo fractional order derivative model of Zika virus transmission dynamics
-
1301
Downloads
-
2872
Views
Authors
R. Prasad
- Department of Mathematics, Gargi College (University of Delhi), New Delhi, Delhi 110049, India.
K. Kumar
- Department of Mathematics, Atma Ram Sanatan Dharma College (University of Delhi), New Delhi, Delhi 110021, India.
R. Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, Delhi 110025, India.
Abstract
The Zika Virus (ZIKV) is a highly contagious disease, and several outbreaks have occurred since it emerged. It is transmitted from one to another human via a mosquito Aedes aegypti. There is no vaccine or established medicine available for ZIKV to date. There is an urgent need to enhance an understanding of the progression mechanism of the disease when drugs or vaccines are not available. Mathematical modeling is a tool that might be helpful to understand the progression dynamics of ZIKV which can enable us to make control strategies for invading the progression dynamics of disease. SEIR-SEI is a famous compartmental deterministic modeling based on integer-order derivative calculus. Nowadays, conversion from integer to fractional order-based derivative modeling is in trend, and it is a very effective and high degree of accuracy. In this paper, we proposed a Caputo fractional-order based susceptible-exposed-infected-recovered (SEIR) structure for hosts and a susceptible-exposed-infected (SEI) structure for mosquitoes for transmission dynamics of ZIKV. For this purpose, we modified the classical compartmental model used in the study of progression dynamics of the Zika fever outbreak in El-Salvador during 2015-16. The modified model involves nonlinear differential equations of fractional (non-integer) order which has an advantage over the classical model due to its memory effect property. Our study includes eight regions across the globe where the Zika outbreak has occurred during the year 2013-2016 including six major archipelagos of French Polynesia, i.e., Tahiti, Sous-le-vent, Moorea, Tuamotu, Marquises, and Australes. The other two regions included Costa Rica and Colombia. The outbreak in selected regions was studied first using a classical model and then compared by a fractional-order model. The data of outbreaks are best fitted with the fractional-order model which enables us to estimate the best parameters values for the outbreaks. Using this modeling, the epidemic threshold parameter $R_0$ was computed which is more accurate than the classical one. Hence, the fractional-order model for ZIKV transmission dynamics is much better prediction, analysis, and disease parameters estimation than the classical model. This modeling enhances the knowledge in the field of fractional order and understanding the ZIKV transmission accurately.
Share and Cite
ISRP Style
R. Prasad, K. Kumar, R. Dohare, Caputo fractional order derivative model of Zika virus transmission dynamics, Journal of Mathematics and Computer Science, 28 (2023), no. 2, 145--157
AMA Style
Prasad R., Kumar K., Dohare R., Caputo fractional order derivative model of Zika virus transmission dynamics. J Math Comput SCI-JM. (2023); 28(2):145--157
Chicago/Turabian Style
Prasad, R., Kumar, K., Dohare, R.. "Caputo fractional order derivative model of Zika virus transmission dynamics." Journal of Mathematics and Computer Science, 28, no. 2 (2023): 145--157
Keywords
- Fractional-order
- transmission dynamics
- basics reproduction number
- ZIKV
MSC
References
-
[1]
F. B. Agusto, S. Bewick, W. F. Fagan, Mathematical model of Zika virus with vertical transmission, Infectious Disease Modelling, 2 (2017), 244--267
-
[2]
A. Ali, S. Islam, M. R. Khan, S. Rasheed, F. M. Allehiany, J. Baili, M. A. Khan, H. Ahmad, Dynamics of a fractional order Zika virus model with mutant, Alexandria Eng. J., 61 (2022), 4821--4836
-
[3]
B. S. T. Alkahtani, A. Atangana, I. Koca, Novel analysis of the fractional Zika model using the Adams type predictorcorrector rule for non-singular and non-local fractional operators, J. Nonlinear Sci. Appl., 10 (2017), 3191--3200
-
[4]
R. M. Anderson, Directly transmitted viral and bacterial infections of man, in: The Population Dynamics of Infectious Diseases, 1982 (1982), 1--37
-
[5]
M. Andraud, N. Hens, P. Beutels, A simple periodic-forced model for dengue fitted to incidence data in Singapore, Math. Biosci., 244 (2013), 22--28
-
[6]
A. Atangana, E. F. Doungmo Goufo, Computational analysis of the model describing HIV infection of CD4+ T cells, BioMed Res. Int., 2014 (2014), 14 pages
-
[7]
S. Binder, A. M. Levitt, J. J. Sacks, J. M. Hughes, Emerging infectious diseases: public health issues for the 21st century, Science, 284 (1999), 1311--1313
-
[8]
C. Caminade, J. Turner, S. Metelmann, J. C. Hesson, M. S. C. Blagrove, T. Solomon, A. P. Morse, M. Baylis, Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015, Proc. Nat. Acad. Sci., 114 (2017), 119--124
-
[9]
] G. S. Campos, A. C. Bandeira, S. I. Sardi, Zika virus outbreak, Bahia, Brazil, Emerging Infectious Diseases, 21 (2015), 1885--1886
-
[10]
V. M. Cao-Lormeau, C. Roche, A. Teissier,E. Robin, A.-L. Berry, H.-P. Mallet, A. A. Sall, D. Musso, Zika virus, French polynesia, South pacific, Emerging Infectious Diseases, 20 (2014), 16 pages
-
[11]
C. Chiyaka, W. Garira, S. Dube, Modelling immune response and drug therapy in human malaria infection, Comput. Math. Methods Med., 9 (2008), 143--163
-
[12]
L. C. C. Medeiros, C. A. R. Castilho, C. Braga, W. V. de Souza, L. Regis, A. M. V. Monteiro, Modeling the dynamic transmission of dengue fever: investigating disease persistence, PLOS Neglected Tropical Diseases, 5 (2011), 13 pages
-
[13]
M. Derouich, A. Boutayeb, E. H. Twizell, A model of dengue fever, BioMed. Eng. OnLine, 2 (2003), 10 pages
-
[14]
O. Diekmann, J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases: model building, analysis and interpretation, John Wiley & Sons, New York (2000)
-
[15]
O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, J. Math. Biology, 28 (1990), 365--382
-
[16]
K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer Science & Business Media, Berlin (2010)
-
[17]
K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever, Nonlinear Dynam., 71 (2013), 613--619
-
[18]
K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3--22
-
[19]
K. Diethelm, N. J. Ford, A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31--52
-
[20]
K. Diethelm, N. J. Ford, A. D. Freed, Y. Luchko, Algorithms for the fractional calculus: a selection of numerical methods, Comput. Methods Appl. Mech. Engrg., 194 (2005), 743--773
-
[21]
M. R. Duffy, T.-H. Chen, W. T. Hancock, A. M. Powers, J. L. Kool, R. S. Lanciotti, M. Pretrick, Zika virus outbreak on Yap Island, federated states of Micronesia, New England J. Med., 2009 (2009), 2536--2543
-
[22]
A. Enfissi, J. Codrington, J. Roosblad, M. Kazanji, D. Rousset, Zika virus genome from the Americas, Lancet, 387 (2016), 227--228
-
[23]
R. A. Erickson, S. M. Presley, L. J. S. Allen, K. R. Long, S. B. Cox, A dengue model with a dynamic Aedes albopictus vector population, Ecolog. Model., 221 (2010), 2899--2908
-
[24]
M. Farman, A. Akgül, S. Askar, T. Botmart, A. Ahmad, H. Ahmad, Modeling and analysis of fractional order Zika model, Virus, 3 (2021), 15 pages
-
[25]
D. Gao, Y. Lou, D. He, T. C. Porco, Y. Kuang, G. Chowell, S. G. Ruan, Prevention and control of Zika as a mosquitoborne and sexually transmitted disease: a mathematical modeling analysis, Sci. Rep., 6 (2016), 14 pages
-
[26]
S. Greenland, C. Poole, Living with P Values: Resurrecting a Bayesian Perspective on Frequentisi Statistics, Epidemiology, 2013 (2013), 62--68
-
[27]
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599--653
-
[28]
W. Karesh, R. Cook, E. Bennett, J. Newcomb, Wildlife Trade and Global Disease Emergence, Emerging Infectious Diseases, 11 (2005), 1000--1002
-
[29]
M. Khalil, A. A. M. Arafa, A. Sayed, A variable fractional order network model of zika virus, J. Fract. Calc. Appl., 9 (2018), 204--221
-
[30]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam (2006)
-
[31]
A. J. Kucharski, S. Funk, R. M. Eggo, H. P. Mallet, W. Edmunds, E. J. Nilles, Transmission dynamics of Zika virus in island populations: a modelling analysis of the 2013–14 French Polynesia outbreak, PLoS Neglected Tropical Diseases, 10 (2016), 11 pages
-
[32]
N. Kumar, M. Abdullah, M. I. Faizan, A. Ahmed, H. A. Alsenaidy, R. Dohare, S. Parveen, Progression dynamics of Zika fever outbreak in El Salvador during 2015–2016: a mathematical modeling approach, Future Virology, 12 (2017), 271--281
-
[33]
C. P. Li, C. X. Tao, On the fractional Adams method, Comput. Math. Appl., 58 (2009), 1573--1588
-
[34]
D. Li, W. B. Ma, Z. C. Jiang, An epidemic model for tick-borne disease with two delays, J. Appl. Math., 2013 (2013), 11 pages
-
[35]
J. A. Machado, A. M. S. F. Galhano, J. J. Trujillo, On development of fractional calculus during the last fifty years, Scientometrics, 98 (2014), 577--582
-
[36]
A. N. Maina, C. M. Farris, A. Odhiambo, J. Jiang, J. Laktabai, J. Armstrong, T. Holland, A. L. Richards, W. P. O’Meara, Q fever, scrub typhus, and rickettsial diseases in children, Kenya, 2011–2012, Emerging Infectious Diseases, 22 (2016), 883--886
-
[37]
D. M. Morens, G. K. Folkers, A. S. Fauci, The challenge of emerging and re-emerging infectious diseases, Nature, 430 (2004), 242--249
-
[38]
D. Musso, Zika virus transmission from French Polynesia to Brazil, Emerging Infectious Diseases, 21 (2015), 1887--1889
-
[39]
D. Musso, D. J. Gubler, Zika virus: following the path of dengue and chikungunya?, Lancet, 386 (2015), 243--244
-
[40]
K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York (1974)
-
[41]
T. A. Perkins, A. S. Siraj, C. W. Ruktanonchai, M. U. G. Kraemer, A. J. Tatem, Model-based projections of Zika virus infections in childbearing women in the Americas, Nature Microbiology, 1 (2016), 7 pages
-
[42]
I. Petráš, R. L. Magin, Simulation of drug uptake in a two compartmental fractional model for a biological system, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011), 4588--4595
-
[43]
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999)
-
[44]
S. Pooseh, H. S. Rodrigues, D. F. M. Torres, Fractional derivatives in dengue epidemics, AIP Conference Proceedings, 1389 (2011), 739--742
-
[45]
R. Rakkiyappan, V. P. Latha, F. A. Rihan, A fractional-order model for Zika virus infection with multiple delays, Complexity, 2019 (2019), 11 pages
-
[46]
A. Roth, A. Mercier, C. Lepers, D. Hoy, S. Duituturaga, E. Benyon, L. Guillaumot, Y. Souares, Concurrent outbreaks of dengue, chikungunya and Zika virus infections–an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012–2014, Eurosurveillance, 19 (2014), 11 pages
-
[47]
T. Sardar, S. Rana, S. Bhattacharya, K. Al-Khaled, J. Chattopadhyay, A generic model for a single strain mosquitotransmitted disease with memory on the host and the vector, Math. Biosci., 263 (2015), 18--36
-
[48]
B. H. Song, S. I. Yun, M. Woolley, Y. M. Lee, Zika virus: history, epidemiology, transmission, and clinical presentation, J. Neuroimmunol., 308 (2017), 50--64
-
[49]
A. K. Srivastav, N. K. Goswami, M. Ghosh, X. Z. Li, Modeling and optimal control analysis of Zika virus with media impact, Int. J. Dyn. Control, 6 (2018), 1673--1689
-
[50]
P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosc., 180 (2002), 29--48