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Abstract
The Zika Virus (ZIKV) is a highly contagious disease, and several outbreaks have occurred since it emerged. It is transmitted

from one to another human via a mosquito Aedes aegypti. There is no vaccine or established medicine available for ZIKV to
date. There is an urgent need to enhance an understanding of the progression mechanism of the disease when drugs or vaccines
are not available. Mathematical modeling is a tool that might be helpful to understand the progression dynamics of ZIKV which
can enable us to make control strategies for invading the progression dynamics of disease. SEIR-SEI is a famous compartmental
deterministic modeling based on integer-order derivative calculus. Nowadays, conversion from integer to fractional order-
based derivative modeling is in trend, and it is a very effective and high degree of accuracy. In this paper, we proposed a Caputo
fractional-order based susceptible-exposed-infected-recovered (SEIR) structure for hosts and a susceptible-exposed-infected (SEI)
structure for mosquitoes for transmission dynamics of ZIKV. For this purpose, we modified the classical compartmental model
used in the study of progression dynamics of the Zika fever outbreak in El-Salvador during 2015-16. The modified model
involves nonlinear differential equations of fractional (non-integer) order which has an advantage over the classical model due
to its memory effect property. Our study includes eight regions across the globe where the Zika outbreak has occurred during
the year 2013-2016 including six major archipelagos of French Polynesia, i.e., Tahiti, Sous-le-vent, Moorea, Tuamotu, Marquises,
and Australes. The other two regions included Costa Rica and Colombia. The outbreak in selected regions was studied first
using a classical model and then compared by a fractional-order model. The data of outbreaks are best fitted with the fractional-
order model which enables us to estimate the best parameters values for the outbreaks. Using this modeling, the epidemic
threshold parameter R0 was computed which is more accurate than the classical one. Hence, the fractional-order model for
ZIKV transmission dynamics is much better prediction, analysis, and disease parameters estimation than the classical model.
This modeling enhances the knowledge in the field of fractional order and understanding the ZIKV transmission accurately.
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1. Introduction

The Zika virus (ZIKV) belongs to the Flaviviridae family, and it was initially identified in Uganda,
Africa, in 1947 in monkeys [28]. Zika disease is caused by a virus transmitted by the bite of a female Aedes
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aegypti mosquito during the day. Symptoms may include mild fever, rash, conjunctivitis, muscle and joint
pain, malaise or headache and typically last for 2–7 days. ZIKV has been an emerging disease since 1952,
and the first large outbreak occurred in Yap, Micronesia during April-July 2007 [21], followed by French
Polynesia outbreak 2013-14 [10], and also in other Pacific countries [39, 46]. The local transmission was
also reported during 2015 in South American countries, including Brazil [9, 38] and Colombia [36]. The
emergence of ZIKV and other infectious diseases occurred by several mediums have caused an extremely
significant impact on global health, and economies [7, 37]. Still, we have not established medicine and
vaccine for ZIKV treatment. Hence, understanding the progression dynamics of the disease might have
a tool as mathematical modeling. Mathematical modeling can tell us about the crucial parameters which
are in the progression of the disease, and control strategies can develop for these parameters to invade
the disease [1, 4–6, 8, 25].

Although much research based on mathematical modeling has been done contributing ZIKV disease,
the most worrying aspect about it is that we are yet far-reaching from the accurate and high degree of
prediction [12, 13, 22, 48]. Thus, it is important to increase our understanding of ZIKV transmission
dynamics by introducing new techniques in the existing models. Developing control and prevention
methods for the disease is an important issue in an epidemic situation. Mathematical modeling has
a long history in providing insights into transmission and control of various viral infectious diseases
across the world [4, 11, 14, 23, 27, 34, 50]. In particular, mathematical modeling plays an important
role in investigating the transmission and interior of the ZIKV [25, 31, 41, 49]. Most of these studies
focused on deterministic integer-order compartmental modeling techniques to investigate the dynamics.
These models have been proposed with more assumptions and restrictions to achieve a goal. However,
these are not appropriate to incorporate host and vector memory and learning behavior on transmission
dynamics of vector-borne diseases. Recent studies on viral infections show the implementation of memory
effect property through fractional-order differential equations (FDEs), which produce the better result as
compared to the classical approach based on ordinary differential equations (ODE) [16, 17]. Researcher
also attempted fractional order based mathematical modeling for ZIKA also such as [2, 3, 24, 29, 45]. In the
paper [3], authors introduced the concept of fractional differentiation based on a non-local operator with
non-singular and non-local kernel for ZIKA disease transmission. Further, they did equilibrium analysis
and developed iterative approximation using Atangana-Baleanu fractional integral operator, they did a
mathematical analysis of the solution, but the authors did not simulate any actual datasets. [29] described
a model for ZIKA in the Caputo sense and analysis model, but they also did not simulate for any actual
datasets. [45] proposed an epidemic model for Zika virus infection using delay differential equations
with fractional order, and the numerical simulations confirmed that a combination of fractional order
and time delays in the epidemic model effectively enriches the dynamics and strengthens the stability
condition of the model. In this way, most of the research work based on fractional-order derivatives for
ZIKA transmission did not consider a simultaneous analysis for fractional and integer order derivative
based models and did not simulate actual datasets.

In the present investigation, we extended the concept of the ZIKV infection model to study the ZIKV
outbreak. These outbreaks occurred in eight regions, including six major archipelagos of French Polynesia,
i.e., Tahiti, Sous-le-vent, Moorea, Tuamotu, Marquises, and Australes during 2013-14, Colombia during
2016 and Cost Rica during 2016-17. We incorporated fractional-order derivatives for the transmission of
ZIKV infection in the existing model, which was earlier examined the progression dynamics of El-Salvador
outbreak of ZIKV disease during 2015-16 [32]. This modified model has been validated with the actual
ZIKV outbreak data of French Polynesia (2013-14), Colombia (2016), and Costa Rica (2016-17). Further,
the Adams-Bashforth-Moultan algorithm [18, 33] has been used to solve and simulate this fractional-order
derivative-based model. The numerical solutions indicate that it has good quality of the approximation,
providing a better agreement between actual and simulated data. This better approximation is helpful
to determine the factor related to the disease. We also estimated key epidemiological parameter, i.e., the
basic reproduction number (R0), which has a massive literature devoted to it. Basic Reproduction Number
(R0) is an expected number of secondary infections produced by single infections in a population where
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everyone is susceptible [15]. Generally, R0 > 1 indicates the spreading of infections in a susceptible
population. Although, this study could help to assist the outbreak planning, measure the transmission
potential of disease, and investigate the association between ZIKV infection with other conditions. This
study also argues that fractional-order derivatives might be more appropriate than integer-order. Thus,
this approach can be further extended in modeling several vector-borne and other viral diseases like
influenza, COVID-19, etc. This work will be helpful to plan for invading the disease before it reaches
disasters condition.

2. Mathematical model

2.1. The classical mathematical model

This work utilizes SEIR compartmental model for hosts and SEI model for vectors developed to dy-
namics ZIKV infection. In this model whole human population is decomposed into different classes on
the basis of infectious state of individuals. Each class represents the health condition of an individual
at time t of the infection. We assumed here uniform mixing in host (human) and vector (mosquito)
population. Further, each human as well as each mosquito has equal probability of transmitting and
acquiring the infection in their respective population. Human population is divided into four mutu-
ally exclusive groups, i.e., susceptible (Sh), exposed (Eh), infected (Ih) and recovered (Rh), whereas
mosquito population is splited into three groups, i.e., susceptible (Sv), exposed (Ev) and infected (Iv).
The total human and mosquito population is denoted by Nh(t) and Nv(t), respectively. In this case,
Nh(t) = Sh(t) + Eh(t) + Ih(t) + Rh(t) and Nv(t) = Sv(t) + Ev(t) + Iv(t). We considered this model for
ZIKV which is defined by a system of non linear ODEs given in system of equations (2.1).

dSh
dt

= −αhShIv,
dEh
dt

= αhShIv −βhEh,
dIh
dt

= βhEh − γhIh,

dRh
dt

= γhIh,
dS ′v
dt

= µv − µvS
′
v −αvS

′
v

Ih
Nh

,
dE ′v
dt

= −µvE
′
v −βvE

′
v +αvS

′
v

Ih
Nh

,

dI ′v
dt

= βvE
′
v − µvI

′
v,

(2.1)

where, S ′v(t), E ′v, and I ′v signify proportion of vectors with the property 0 6 S ′v,E ′v, I ′v 6 1 given in
equation (2.2).

S ′v(t) =
Sv

Nv
, E ′v(t) =

Ev

Nv
, I ′v(t) =

Iv

Nv
. (2.2)

In this system, αh denotes the rate at which susceptible humans are exposed and is equal to a× b×m,
where a is the number of mosquitoes bites per day per human, b is the transmission probability from
infectious mosquito to suspected human per bite and m is the average ratio of mosquito to human, βh
is the rate at which exposed humans are become infected, and γh is the rate at which infected humans
get recovered. Similarly αv is the rate at which susceptible mosquitoes are exposed and is equal to a× c
(independent of vector to human ratio), where c is the transmission probabilities from infected human
to infected mosquitoes, βv is the rate at which exposed mosquitoes become infected. Moreover, the
parameter µv is the mortality rate of vectors (mosquito life span). Finally, the rate from infected human
population to recovered human population is denoted by γh. For the better understanding of parameters
the above mentioned model (2.1) can be defined accordingly as in system of equations (2.3).
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dSh
dt

= −abmShIv,
dEh
dt

= abmShIv −βhEh,
dIh
dt

= βhEh − γhIh,

dRh
dt

= γhIh,
dS ′v
dt

= µv − µvS
′
v − acS

′
v

Ih
Nh

,
dE ′v
dt

= −µvE
′
v −βvE

′
v + acS

′
v

Ih
Nh

,

dI ′v
dt

= βvE
′
v − µvI

′
v.

(2.3)

We make following assumptions while formulating this model. (a) The transmission do not consider
human-to-human transmission like sexual transmission, mother to baby, or through blood transmission,
(b) Demo-graphical changes, migration, new births or deaths are not considered in human population,
hence the total human population (Nh) is maintained constant, (c) The total vector population (Nv) is also
maintained constant during the work by considering the birth and death rates identical.

2.2. Fractional order derivative based model

Recently, FDEs have gained considerable attention in different fields of engineering, life sciences,
physics, biology and many others. It is being observed that fractional-order derivatives can provide a
better agreement between actual and simulated data as compared to classical models, which are based
on integer-order derivatives [16, 17]. Therefore, it is reasonable to formulate the presented model using
fractional-order derivatives, which has an advantage due to its memory effect property [40]. Memory
effect property suggests that the future state does not depend only on its current state but also on its past
states.

Leibniz predicted the concept of FDEs in a letter written in 1695 [35]. After that Pooseh et al. [44]
attempted to introduce the notion of fractional derivative in the field of vector-borne transmission dy-
namics. They replaced all the first derivatives in a classical model by Riemann-Liouville type fractional
derivative of order α ∈ (0, 1). There are many exciting definitions of fractional derivatives that have been
discussed in [30, 43], although the best known is the Riemann-Liouville definition. The Riemann-Liouville
derivative of order α is defined as:

Dα0+f(t) =
1

Γ(n−α)
(
d

dt
)n

∫t
0

f(s)

(t− s)α−n+1ds, n = [α] + 1,

where, 0 < α < 1 for α ∈ R, n is an integer, Γ represents the gamma function and [α] represents greatest
integer value of α. This approach leads to the following two issues. First is that, Riemann-Liouville does
not hold differentiation of the constant [16], i.e.,

Dαc =
c

Γ(1 −α)
t−α 6= 0, c = constant.

Hence, it fails to solve the differential operators in case of their constant value when they get replaced by
Riemann-Liouville differential operator of order α ∈ (0, 1) [20]. Thus, the modified model will discard our
assumption that a total human population (Nh) and a total number of mosquito populations (Nv) should
keep constant. The second issue is that Riemann-Liouville type fractional derivative fails to combine with
the initial conditions of the form defined here in the classical model [16, pp. 54–55].

Therefore, in this article, we considered Caputo type fractional derivative [16, Chap. 3], [26] instead
of Riemann-Liouville. It can be defined as:

Dαt f(t) =
1

Γ(n−α)

∫t
0

fn(s)

(t− s)α−n+1ds, n = [α] + 1.

Thus, by replacing the integer derivative in model (2.3) by Caputo derivative of order α, the modified
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model (2.4) is given as:

dαSh
dαt

= −abmShIv,
dαEh
dαt

= abmShIv −βhEh,
dαIh
dαt

= βhEh − γhIh,

dαRh
dαt

= γhIh,
dαS ′v
dαt

= µv − µvS
′
v − acS

′
v

Ih
Nh

,
dαE ′v
dαt

= −µvE
′
v −βvE

′
v + acS

′
v

Ih
Nh

,

dαI ′v
dαt

= βvE
′
v − µvI

′
v,

(2.4)

where α ∈ (0, 1] is the order of fractional derivative and the fractional operator dα is identical to the
classical first derivative for α = 1.

Further, by a simple dimension analysis, we can note that model (2.4) have mismatching in the dimen-
sions on the left hand and right-hand side of the equations. A simple dimensional analysis shows that the
left-hand side of this model has dimension (time)−α. The terms a,βh,γh,µv,βv on the right-hand side
has the dimension (time)−1 and the other terms on right-hand side are dimensionless found by doing
a close inspection. Therefore, the right-hand side of this model has the dimension (time)−1. We make
sure that the right-hand side of the equations of the system must have the same dimension as the left-
hand side. This drawback of ”fractionalization” has been addressed by Diethelm where he formulated a
fractional-order deterministic model [17]. Sardar et al. [47] used this method to analyze a similar model
and achieved better results. Therefore, we tried to overcome the mismatching in dimensions using the
procedure described by Diethelm [17]. Moreover, the mosquitoes and human population do not behave
the same way, which gives more refinement to this model. Hence, the model (2.4) can become more real-
istic by introducing two different fractional differential operators α ∈ (0, 1] and β ∈ (0, 1] for human and
mosquitoes, respectively. Following the method given by Diethelm [17], modified and improved model
(2.5) is given as:

dαSh
dαt

= −aαbmShIv,
dαEh
dαt

= aα(b)(m)ShIv −β
α
hEh,

dαIh
dαt

= βαhEh − γαhIh,

dαRh
dαt

= γαhIh,
dβS ′v
dβt

= µβv − µβv S
′
v − (a)β(c)S ′v

Ih
Nh

,
dβE ′v
dβt

= −µβv E
′
v −β

β
v E
′
v + (a)β(c)S ′v

Ih
Nh

,

dβI ′v
dβt

= ββv E
′
v − µ

β
v I
′
v.

(2.5)

It is evident that as α → 1 and β → 1, model (2.5) reduces to classical model (2.3). By a simple
computation in model (2.5), the total population Nh and Nv in the modified system is observed to be
constant. Therefore, this section deals with the mathematical formulation of the fractional-order initial
value problem. The classical model (2.3) is an integer order system that is based on the deterministic, in
which the present state do not carry any information from its previous all state where current state is just
based on initial state. It is well defined that the state of many systems in biological science, viscoelastic
study etc., depends on the properties of previous all states [42]. In order to get a better understandingof
the transmission dynamics of mosquito-borne diseases, it is necessary to incorporate the memory and
learning behavior of hosts and vectors. Therefore, we tried the generalization of the classical model,
which carries information about its different previous states, to get better and more accurate results.

Furthermore, the Basic reproduction number R0 is an important part of knowing infections’ dynamics.
A basic reproduction number is the average number of secondary infections from one infected to another
susceptible population. We compute R0 using the adopted methodology from [32] and resulted in the
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form of equation (2.6) for fractional-order model (2.5).

R0 =

√√√√(aαbm)(aαc)ββv

γαhµ
β
v (µ

β
v +ββv )

. (2.6)

3. Simulations

In this article, the data for ZIKV outbreaks occurred in French Polynesia (2013-14) has been obtained
from the supporting information of Kucharski et al. [10], the data of Costa Rica (2016) outbreak has been
obtained from Pan American Health Association (PAHO) from 17th week of 2016 to 15th week of 2017
and Colombia data has been extracted from a research article [36]. As the mathematical model depends
on the parameters, the parameter can be calculated by two mode, one can be estimated from literature by
doing certain calculation and other from the original data. Here, the range value of the parameter for the
concerned data are obtained from the related literature and are shown in Table 1. The initial conditions for
all the data with respect to the parameters are given in Table 2 depicting the healthy mosquito population.
In this article, we first attempted to validate the classical model (2.3) for the defined set of parameters
subjected to the initial conditions, showing the need of fractional order, as the solution for this model do
not provide a good match with the actual number of infected humans. We simulated the model on the
MATLAB platform using Runga-Kutta fourth order finding the plot between the simulated model and the
actual number of reported cases as shown in Figures 1a to 1h for the respective regions. The comparison
of two curves in the figures suggested that actual data of outbreak does not correspond well with the data
generated from the model with the given values of parameters. The prediction of infected humans was
somewhat over estimated by the model. Hence, we use the generalization of the model to get more better
and accurate results.

Table 1: Range and baseline values chosen for model parameters.

Regions a b m c 1/γh βh βv 1/µv
Tahiti 0.4 0.6 2 0.7 5 0.05 0.9 16
Sous-le-vent 0.3 0.6 5 0.7 4 0.15 0.1 7.4
Moorea 0.3 0.6 5 0.7 2.5 0.25 0.17 7
Tuamotu-Gambier 0.3 0.6 5 0.7 2.5 0.25 0.17 7
Marquises 0.3 0.6 5 0.7 2.5 0.25 0.17 7
Australes 0.3 0.6 5 0.7 12.5 0.25 0.125 7
Costa Rica 0.3 0.4 5 0.6 8 0.03 0.1 17
Colombia 0.3 0.4 5 0.6 7 0.06 0.07 17
Range 0.3-1 0.1-0.75 1-10 0.3-0.75 3-14 0.01-0.75 0.01-0.75 4-35

Table 2: Initial values for state variables for ZIKV outbreak in concerned regions.

Regions Sh Eh Ih Rh Sv Ev Iv
Tahiti 104 103 49 0 105 20 10
Sous-le-vent 104 90 0 0 105 20 10
Moorea 104 100 0 0 105 20 10
Tuamotu-Gambier 104 10 0 0 105 20 10
Marquises 104 10 0 0 105 20 10
Australes 104 10 0 0 105 20 10
Costa Rica 104 100 4 0 105 20 10
Colombia 105 153 2173 100 106 200 100
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(a) Tahiti, French Polynesia 2013-14 (b) Sous-le-vent, French Polynesia 2013-14

(c) Moorea, French Polynesia 2013-14 (d) Tuamotu-Gambier, French Polynesia 2013-14

(e) Marquises, French Polynesia 2013-14 (f) Australes, French Polynesia 2013-14

(g) Costa Rica 2016 (h) Colombia 2016

Figure 1: Actual and estimated number of infected humans Ih(t) in outbreak occured in (a) Tahiti, French
Polynesia 2013-14, (b) Sous-le-vent, French Polynesia 2013-14, (c) Moorea, French Polynesia 2013-14,
(d) Tuamotu-Gambier, French Polynesia 2013-14, (e) Marquises, French Polynesia 2013-14, (f) Australes,
French Polynesia 2013-14, (g) Costa Rica 2016, (h) Colombia 2016: Comparison of results obtained by
simulation via classical model 2.3 based on ODE with real data.
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4. Results and discussion

Fractional order model is used as a generalization to classical model to simulate the ZIKV transmission
by establishing the model with memory in both the host and vector population. There is no analytical
solution available to solve and analys the FDEs in our knowledge. We solved fractional order problem
given in model (2.5) numerically using an effective predictor-corrector numerical scheme described briefly
in [18, 19, 47]. The starting point in the Caputo fractional derivative is taken as zero. The step size has
been taken as 10−2 days as it is considered appropriate for this system of equation as using smaller step
sizes like 10−4 days do not give significantly different results [17]. Using the parameter values and initial
values as given in Tables 1 and 2, respectively. We searched the fractional order that best fits the data on
the reported number of cases. The value of the derivative order was obtained by a search on the interval
(0, 1], i.e., α,β ∈ i/100: i=1,2,3,. . . ,100. We started with α = 1 and successively lower its value until we find
better solution, similarly we did with β by varying it value on the interval (0, 1]. A good approximation
was obtained for the values of α and β given in Table 3 for the respective regions of ZIKV outbreak. The
plot of numerical solutions of system of FDEs having fixed parameter values is shown Figure 2a to 2h.
The figures depicted that the variation in values of α and β can leads to better approximation of real
outbreak data as compared to classical solution (α,β = 1) when examined all of the regions. It can be
seen that smaller value of α leads to slightly better approximations of the real data in early stage of the
epidemic as compared to the larger values of α. Moreover, we have also calculated the basic reproduction

Table 3: Reproduction number and fractional values for ZIKV outbreak in respective regions.

Region α β R0

Tahiti 0.95 0.565 1.9472
Sous-le-vent 0.75 0.24 1.1854
Moorea 0.6 0.495 1.1508
Tuamotu-Gambier 0.2 0.36 1.1169
Marquises 0.215 0.34 1.1417
Australes 0.4 0.7 1.2246
Costa Rica 1 0.47 1.8658
Colombia 0.99 0.05 1.1717

number for the fractional-order model using equation (2.6). The values of the basic reproduction number
for the respective data are shown in Table 3. All the values of R0 come out to be > 1, which indicates that
the Zika virus is spreading. Also, through the previous studies of disease outbreaks, R0 is found to be
greater, i.e., 0.5 − 6.3 in El-Salvador, Brazil and Columbia [25, 32] and 2.6 − 4.8 in French Polynesia [31]
when computed using classical model.

The behavior of Reproduction number R0 with the variation in different parameters defined for the
fractional epidemic model is shown in Figures 3a-3c for the ZIKV outbreak in Costa Rica in 2016. Figure
3a depicted that R0 varies from 0-20 with respect to change in mosquitoes biting rate a ∈ [0, 5] for different
value of recovery rate, i.e., γh ∈ [0.0714, 0.3333] for Costa Rica epidemic. It can be noticed through the
figure that R0 is directly proportional to mosquitoes biting rate with any value of γh. Further, we can
notice that R0 also depends on γh (recovery rate) as it increases with a decrease in the value of γh at
any fixed value of a (mosquitoes biting rate). Figure 3b illustrated inversely proportionate behavior of
Reproduction number (R0) to the death rate of mosquitoes (µv) with the change in values of mosquitoes
biting rate, a ∈ [0.3, 1]. The range of R0 comes out to be [0.5, 6] for both the data concerning the µv. Here,
the relationship curve also indicates the upwards shift with the mosquito’s biting rate value. Moreover,
Figure 3c also showed that R0 is in direct relationship with the mosquitoes biting rate with variation in
the value of µv. However, the curve showed the reciprocal behavior with the death rate of mosquito (µv),
i.e., the value of R0 decreases with the increase in value of µv.



R. Prasad, K. Kumar, R. Dohare, J. Math. Computer Sci., 28 (2023), 145–157 153

(a) Tahiti, French Polynesia 2013-14 (b) Sous-le-vent, French Polynesia 2013-14

(c) Moorea, French Polynesia 2013-14 (d) Tuamotu-Gambier, French Polynesia 2013-14

(e) Marquises, French Polynesia 2013-14 (f) Australes, French Polynesia 2013-14

(g) Costa Rica 2016 (h) Colombia 2016

Figure 2: Comparison of infected/infectious individuals I(t): real data, classical model and the fractional
model with the different values of α and β as mentioned in Table 3 for ZIKV outbreak in Tahiti, Sous-le-
vent, Moorea, Tuamotu-Gambier, Marquises, Australes, Costa Rica, and Colobia, respectively.
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Figure 3: Behavior of basic reproduction number (R0) varying with different parameters involved in
model for Cost Rica outbreak, (a) change in R0 with respect to mosquitoes biting rate, a with variation γh;
(b) change in R0 with respect to µv with variation γh; (c) change in R0 with respect to mosquitoes biting
rate, a with variation µv.

We have simulated Sh, Rh, and Ih for different values of FDEs for Costa Rica outbreak for a better
understanding of fractional order. Three different values of α are considered in each plot in Figures 4a-
4c. When α = 1, the system is the classical order. The variation of Sh(t), Rh(t), and Ih(t) versus time
t is shown for different values of α = 1, 0.9, 0.8 by fixing the parameter values. It is observed that the
susceptible population drops significantly in a relatively short time with the same set of parameters which
seems somewhat unrealistic in nature. Figures 4a-4c, shows that approximate solution implementing
simple fractional model will provide surprisingly better results. However, transforming a classical model
into a fractional one makes it sensitive to the order of differentiation as a small change in the value of
fractional order leads to a big change in the final result. It can be clearly depicted that the approximate
solutions depend continuously on the fractional derivative, α and β. Therefore, the obtained results show
that we have improved the dynamics of SEIR model by implementing fractional derivatives.
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Figure 4: Numerical solution of model (2.5) with the parameters mention in Table 1. (a) Sh(t) of Costa
Rica 2016-17 Zika outbreak at α = 1, 0.9, 0.8; (b) Ih(t) of Costa Rica 2016-17 Zika outbreak at α = 1, 0.9, 0.8;
(c) Rh(t) of Costa Rica Zika 2016-17 outbreak at α = 1, 0.9, 0.8.



R. Prasad, K. Kumar, R. Dohare, J. Math. Computer Sci., 28 (2023), 145–157 155

5. Conclusion

Zika continues to be a disease with potential threats and burdens to humans worldwide. This research
work is considered a generalization of a classical epidemic model by implementing fractional order. We
constructed and analyzed a fractional-order derivative-based model for the progression of ZIKV infec-
tion during the outbreak in six major archipelagos of French Polynesia, i.e., Tahiti, Sous-le-vent, Moorea
Tuamotu, Marquises and Australes, and Costa Rica and Colombia during the years 2013-16. Further, we
evaluated the model with different values of the fractional operator and observed its effect at different
values involving the same parameters as described initially in the classical model. By the simulation of
infection through a linear and non-linear fractional model, it is concluded that a non-linear FDEs model
provides more accurate results than ODEs models. We used the Adams-type predictor-corrector method
to demonstrate numerically that the fractional-order model provides exciting and more accurate results.
Specifically, it has been revealed that the human population follows a different order than the mosquito
population. This model further might be extendable for in-homogeneity distribution of population and
their contact using incorporation of network-based approach.
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