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Abstract
This paper concerns a nonlinear integral equation modelling the spread of epidemics in which immunity does not occur

after recovery. The model is mainly based on the return of some of the individuals who have been exposed to the pathogen
and who have completed the incubation period, into the susceptible class. We firstly prove the uniqueness of the global solution
of the model with the given initial conditions. After determining the positively invariant region for the model, using LaSalle
invariance principle [J. P. LaSalle, IRE Trans. CT, 7 (1960), 520–527] and the concept of persistence we present some results about
the stability analysis of the solutions according to the case of the reproduction number R0 which is a vital threshold in spread
of diseases.
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1. Introduction

As is known, mathematical modelling frequently used to describe many nonlinear problems arising
from the most areas of natural sciences such as physics, engineering, economics, biology, epidemiology
and so on [2, 9, 13, 16–18]. In particular, nonlinear integral and differential equations are often used in
characterization of some problems of real world such as theory of radioactive transfer [16], the modelling
of the behaviour of viscoelastic materials in mechanics [29], the modelling of soft tissues like mitral valves
or the aorta in the human heart [12], the modelling of tumor growth [8] and so on.

Especially, modelling of epidemic diseases as mathematically is quite important in terms of under-
standing, controlling and reducing the effects of the outbreaks. There are many mathematical models
that determine the basic principles for the spread of a disease in a population using integral and dif-
ferential equations. For example, Kermack and McKendrick with their study [17] have pioneered these
mathematical models which are used extensively. By using the following system of differential equations,
they have tried to explain the spread of infectious disease in the course of time for a closed population

dS

dt
= −βS (t) I (t) ,
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dI

dt
= βS (t) I (t) − γI (t) ,

dR

dt
= γI (t) .

In the model, known as SIR model, the population has been divided into non-intersecting three
groups; Susceptibles (S), Infectious (I) and Recovered (R). β is the effective contact rate between S and I.
γ represents the recovery rate of infectious. Then many authors studied on this model, [1, 4, 5, 22–25].

Also, for many important diseases, there is a significant incubation period during which individuals
have been infected but are not yet infectious themselves. In general, the individuals in the incubation
period are evaluated in a separate compartment E (Exposed). In the literature, there are many results
about such epidemic models [11, 19, 26, 27].

In [26] the authors analyzed a SEIR epidemic model in which prophylactic for the exposed individuals
is included. They considered that there were transitions from class E to I and R without any delay terms.

Korobeinikov, in [19], presented global properties of a SEIR model with horizontal and vertical trans-
missions.

Also, as it is known, in some epidemic diseases, any long-lasting immunity may not be formed against
the pathogen after recovery and such diseases could be modeled via SIRS or SEIRS form, [3]. Moreover
in some diseases especially transmitted by bacteria such as tuberculosis, meningitis and gonorrhea even
short-term immunity do not occur. That is, the infectious return to the susceptible class on recovery
because the disease confers no immunity against reinfection, [6]. Since no need for recovery class, such
diseases could be modeled via SIS or SEIS form. In the literature, there are many mathematical models
given via these forms, [7, 19, 30]. In [19] the author considers a SEIS model without any delay terms.
According to this model an infective either returns to the susceptibles compartment immediately after
recovery, or dies.

On the other hand, in addition to differential equations, integral equations are also used in epidemiol-
ogy. In 1980, Hethcote and Tudor [15] used a system of nonlinear Volterra integral equations of convolu-
tion type to describe endemic infectious diseases for which infection confers permanent immunity. Then
the system used in this paper was reduced to the system of ordinary differential equations known as the
SIR model.

Also G. Gripenberg in the paper [14] studied the following integral equation which arises in the study
of the spread of an infectious disease that does not induce permanent immunity

x (t) = k

[
q (t) −

∫t
0
A (t− s) x (s)ds

] [
h (t) −

∫t
0
B (t− s) x (s)ds

]
, t ∈ [0,∞) .

Where, it is assumed that, in a population with constant size K, the average of infectivity of an individual
infected at time s is proportional to B (t− s) at time t. If the rate at which individuals susceptible to the
disease have become infected up to time t is x (s) , s < t, then the integral

∫t
−∞ B (t− s) x (s)ds will be

approximately proportional to the total infectivity. If the cumulative probability function for the loss of
immunity of an individual infected at time s is 1 −A (t− s) , t > s, then K−

∫t
−∞A (t− s) x (s)ds will

approximate the number of susceptibles.
In this paper we deal with the following equation modeling the spread of epidemics in which immu-

nity does not occur after recovery.

x(t) = g(0) +
∫t

0
u (s, xs)ds, t > 0, (1.1)

x(t) = g(t), − τ 6 t 6 0.

Where g, xs ∈ C
(
[−τ, 0] , [0, 1]2

)
, xs (θ) = x (s+ θ) and x ∈ C

(
[−τ,∞) , [0, 1]2

)
. Also u : [0,∞)×Ω →

[0, 1]2 such that Ω ⊂ C
(
[−τ, 0] , [0, 1]2

)
.



Ü. Çakan, Math. Nat. Sci., 7 (2021), 16–25 18

We should immediately note that the equation (1.1) will turn to a SEIS model after appropriate choos-
ing of mentioned functions. Unlike the assumption that all exposed individuals transfer to the infectious
class, which is valid in classical SEIS models, in the model presented in this study, after the incubation
period, exposed individuals either transfer to the infectious class or return to the susceptible class.

As known C ([−τ, 0] , Rn) is a Banach space of continuous functions, and ‖·‖C denotes the norm on
C ([−τ, 0] , Rn) and is defined by

‖x‖C = sup

{
n∑
i=1

|xi (t)| : −τ 6 t 6 0

}
.

On the other hand we can say that the equation (1.1) has a unique solution if u is Lipschitz continuous
according to the second variable in every compact subsetM ⊂ Ω. Indeed this result depends on Schauder
fixed point theorem, [20].

If we choose u (s, xs) = f (xs), g = (g1,g2) then finding the solution of the above system is equivalent
to solving the following equation

x′ (t) = f
(
xt
)

, t > 0 (1.2)
x0 = g,

where f : Ω→ [0, 1]2.
We construct a mathematical model, (which consists of system of delay ordinary differential equa-

tions), for represent spreading of a disease in a closed population. We define this model by choosing
x = (x1, x2), x1 = S, x2 = I and f = (f1, f2) in (1.2) such that

f1 (x) = µ (1 − x1 (0)) −βx1 (0) x2 (0) + (1 − p)βx1 (−τ) x2 (−τ) e
−µτ + rx2 (0) ,

f2 (x) = pβx1 (−τ) x2 (−τ) e
−µτ − (µ+ r) x2 (0) ,

with initial function x1(t) = g1(t), x2(t) = g2(t) for −τ 6 t 6 0.

Theorem 1.1. There exists a unique solution of the equation (1.1) such that f = (f1, f2) with initial function
x1(t) = g1(t), x2(t) = g2(t) for −τ 6 t 6 0.

Proof. The proof depends on the result in [3, 20]. So it is sufficient to show that f is Lipschitz continuous in
every compact subset M ⊂ Ω. Let x = (x1, x2) , y = (y1,y2) ∈M, then we can write from the description
of f

‖f (x) − f (y)‖
= |f1 (x) − f1 (y)|+ |f2 (x) − f2 (y)|

= |µ [y1(0) − x1 (0)] +β [y1 (0)y2 (0) − x1 (0) x2 (0)]
+ (1 − p)βe−µτ [x1 (−τ) x2 (−τ) − y1 (−τ)y2 (−τ)] + r [x2 (0) − y2 (0)]

∣∣
+
∣∣pβe−µτ [x1 (−τ) x2 (−τ) − y1 (−τ)y2 (−τ)] + (µ+ r) [y2 (0) − x2 (0)]

∣∣
6 µ |y1(0) − x1 (0)|+β |y1 (0)y2 (0) − x1 (0) x2 (0)|
+βe−µτ |x1 (−τ) x2 (−τ) − y1 (−τ)y2 (−τ)|+ r |x2 (0) − y2 (0)|
+ (µ+ r) |y2 (0) − x2 (0)|
6 2 (µ+ r) ‖x− y‖C +β |y1 (0)y2 (0) − y1 (0) x2 (0)|
+β |y1 (0) x2 (0) − x1 (0) x2 (0)|+βe−µτ |x1 (−τ) x2 (−τ) − y1 (−τ) x2 (−τ)|

+βe−µτ |y1 (−τ) x2 (−τ) − y1 (−τ)y2 (−τ)|

6 2 (µ+ r) ‖x− y‖C +β (|y1 (0)|+ |x2 (0)|) ‖x− y‖C
+βe−µτ (|x2 (−τ)|+ |y1 (−τ)|) ‖x− y‖C . (1.3)
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Taking into account the facts e−µτ 6 1 and |xi (θ)| 6 1 for −τ 6 θ 6 0, i = 1, 2 then we conlude

‖f (x) − f (y)‖ 6 2 (µ+ r+ 2β) ‖x− y‖C ,

from (1.3). So if we take k > 2 (µ+ r+ 2β), the inequality

‖f (x) − f (y)‖ 6 k ‖x− y‖C ,

holds in every compact subset M ⊂ Ω. This completes the proof.

2. Description of the model

In this paper we form a compartmental model by dividing into three groups (S,E, I) of the population
exposed to an infectious disease. In the model, we firstly assume that all new members of the population
get involved in the susceptible class S at a constant rate µ. Also the constant µ represents the natural death
rate of all compartments and we neglect disease induced deaths. So the total population N(t) is constant
and equal to 1 for all t > 0. Incubation period is the time elapsed between exposure to the pathogen
and when symptoms and signs are first apparent. Depending on the disease, the individual may or may
not be infectious during the incubation period. We assume that τ denotes the incubation period for the
model. Also, after the incubation period some of exposed (at rate p) become infectious and the others (at
rate 1 − p) turn to class S. On the other hand, β is the transmission rate from susceptibles to E. Finally r
denotes rate of recovery in which immunity does not occur.

Let we write Ẽ (t, θ) to represent the number of individuals exposed and entered in the incubation
period with exposure age θ (i.e, time elapsed since exposure to the pathogen) at time t.

Taking into account that the natural death rate µ we obtain the description

Ẽ (t, τ) = βS(t− τ)I(t− τ)e−µτ,

from the following initial value problem(
∂

∂t
+
∂

∂τ

)
Ẽ (t, τ) = −µẼ (t, τ) , Ẽ (t, 0) = βS (t) I (t) .

So, depending all the above descriptions and equation (1.2), we present a SEIS model given by the
following system

S′ (t) = µ(1 − S(t)) −βS (t) I (t) + (1 − p)βS (t− τ) I (t− τ) e−µτ + rI (t) , (2.1)
E′ (t) = βS (t) I (t) −βS (t− τ) I (t− τ) e−µτ − µE (t) ,
I′ (t) = pβS (t− τ) I (t− τ) e−µτ − (µ+ r) I (t) .

Where S(t), E(t) and I(t) denote the size of the subclasses: susceptibles, exposed to the pathogen
and infectious individuals at time t, respectively. Only susceptible individuals that have contact with
infectious at time t − τ, become infectious at time t provided that they have survived the incubation
period of τ. Thus taking into account that the number of new individuals exposed to the pathogen at
time t− τ is βS (t− τ) I (t− τ) , and only p-ratio of exposed get infectious then the incidence of newly
infectious is given by the mass action term pβS (t− τ) I (t− τ) e−µτ.

Also we write N(t) to show the total number of the population at time t such that S(t) + E(t) + I(t) =
N(t) ≡ 1 for all t > 0. Naturally, the functions S, E, I, N are nonnegative and all parameters are positive.
We should immediately that since E (t) = 1 − S (t) − I (t), function E does not affect the solution of (2.1)
and so it can be omitted. Hence we mean the following system by the model

S′ (t) = µ(1 − S(t)) −βS (t) I (t) + (1 − p)βS (t− τ) I (t− τ) e−µτ + rI (t) ,
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I′ (t) = pβS (t− τ) I (t− τ) e−µτ − (µ+ r) I (t) , (2.2)

with initial function S(t) = g1(t), I(t) = g2(t) for −τ 6 t 6 0. It can be easily seen that Theorem 1.1
guarantees the uniqueness of the global solution of the model. Now we present the positively invariant
set for the model by using a similar method in [3].

Theorem 2.1. The set

Ψ =

{
(S, I) ∈ C

(
[−τ, 0] , [0, 1]2

)
: β

∫ 0

−τ
S (θ) I (θ) eµθdθ 6 1 − S (0) − I (0)

}
,

is positively invariant for the model (2.2).

Proof. Let

β

∫ 0

−τ
S (θ) I (θ) eµθdθ 6 1 − S (0) − I (0) .

If we define

F (t) = 1 − S (t) − I (t) −β

∫t
t−τ

S (θ) I (θ) eµ(θ−t)dθ,

then F (0) > 0. On the other hand

F′ (t) = −S′ (t) − I′ (t) −β
[
S (t) I (t) − S (t− τ) I (t− τ) e−µτ

]
− µβ

∫t
t−τ

S (θ) I (θ) eµ(θ−t)dθ

= −µ+ µS (t) +βS (t) I (t) − (1 − p)βS (t− τ) I (t− τ) e−µτ

− rI (t) − pβS (t− τ) I (t− τ) e−µτ + (µ+ r) I (t)

−βS (t) I (t) +βS (t− τ) I (t− τ) e−µτ − µβ

∫t
t−τ

S (θ) I (θ) eµ(θ−t)dθ

= −µ+ µS (t) + µI (t) − µβ

∫t
t−τ

S (θ) I (θ) eµ(θ−t)dθ

= −µ

(
1 − S (t) − I (t) −β

∫t
t−τ

S (θ) I (θ) eµ(θ−t)dθ

)
= −µF (t) .

This result shows that F (0) > 0 implies F (t) > 0 for all t > 0. Also it means that if S (0) + I (0) 6 1 then
S (t) + I (t) 6 1 for all t > 0. These results complete the proof.

Corollary 2.2. Individuals who complete the incubation period at time t are those exposed to the pathogen at
time t− τ. Therefore, for t = 0, the total number of exposed and survived individuals in [−τ, 0] (represented by
β
∫0
−τ S (θ) I (θ) e

µθdθ) should not exceed the size of class E at time t = 0 (E (0) = 1 − S (0) − I (0)). This is
needed, so that the model can be epidemiologically meaningful, and this condition is satisfied in Ψ.

Now, let us find the disease-free equilibrium point of the system (2.2). Let (S (t) , I (t)) =
(
S̄, Ī
)

be an
equilibrium of the model. Then, solving the system of algebraic equations

0 = µ
(
1 − S̄

)
−βS̄Ī+ (1 − p)βS̄Īe−µτ + rĪ, (2.3)

0 = pβS̄Īe−µτ − (µ+ r)Ī,

we find the disease-free equilibrium point of the model as P0 = (S0, I0) = (1, 0).
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3. Stability analysis of the model

By using the next generation matrix method [10] we can calculate basic reproduction number R0. Let
X = (I,S)T , so model (2.2) can be written as

dX

dt
= P(X) −F(X),

such that

P(X) =

 pβS (t− τ) I (t− τ) e−µτ
0

 ,

and

F(X) =

 (µ+ r) I (t)

βS (t) I (t) − µ(1 − S(t)) − (1 − p)βS (t− τ) I (t− τ) e−µτ − rI (t)

 .

Differentiating P(X) and F(X) with respect to I, S and computing respectively them at the disease-free
equilibrium P0, we get

P = dP1x1 (P0) =
[
pβe−µτ

]
,

F = dF1x1 (P0) = [µ+ r] ,

and

PF−1 =

[
pβe−µτ

µ+ r

]
.

Therefore, the basic reproduction number of the model (2.2) can be found as

R0 = ρ
(
PF−1) = pβe−µτ

µ+ r
.

On the other hand, to determine whether another equilibrium point
(
S̄, Ī
)
of the system (2.2) exists or

not, we must solve the following system of algebraic equations with Ī 6= 0.

0 = µ
(
1 − S̄

)
−βS̄Ī+ (1 − p)βS̄Īe−µτ + rĪ,

0 = pβS̄Īe−µτ − (µ+ r)Ī. (3.1)

From the system (3.1), we can obtain the endemic equilibrium point P∗ = (S∗, I∗) of the model such that

S∗ =
1
R0

, I∗ =
µ (R0 − 1)

β (1 − (1 − p) e−µτ)
. (3.2)

Corollary 3.1. Model (2.2) always has a disease-free equilibrium P0. If R0 > 1 then there are two equilibrias;
disease-free equilibrium P0 and endemic equilibrium P∗.

Now we deal with stabilities of the disease-free equilibrium point P0 and the endemic equilibrium
point P∗ of the system (2.2).

Theorem 3.2. The disease-free equilibrium P0 is locally asymptotically stable in the positively invariant region Ψ if
R0 < 1, and unstable if R0 > 1.
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Proof. The Jacobian matrix at the disease-free equilibrium P0 of the system (2.2) is

J(P0) =

 −µ −β+ (1 − p)βe−µτ + r

0 pβe−µτ − (µ+ r)

 .

It can be easily seen that J(P0) always has the eigenvalues λ1 = −µ < 0 and λ2 = pβe−µτ − (µ+ r). Also
pβe−µτ − (µ+ r) < 0 for R0 < 1. So the characteristic equation of J(P0) has two negative roots. On the
other hand, in the case R0 > 1, one of roots of the characteristic equation has positive real part. Therefore,
if R0 < 1 then the disease-free equilibrium P0 is locally asymptotically stable; if R0 > 1, is unstable.

Theorem 3.3. The disease-free equilibrium point of system (2.2) P0 is globally asymptotically stable if R0 < 1.

Proof. Let us consider the following nonnegative function:

L (t) = I (t) + pβe−µτ
∫t
t−τ

S (x) I (x)dx.

It is easy see that L (t) = 0 if I (t) = I0, and S (t) = S0. Differentiating with respect to time yields and
considering the fact S(t) 6 1 then we obtain

dL

dt
= I′ (t) + pβe−µτ (S (t) I (t) − S (t− τ) I (t− τ))

= pβS (t− τ) I (t− τ) e−µτ − (µ+ r) I (t)

+ pβe−µτ [S (t) I (t) − S (t− τ) I (t− τ)]

= I (t)
[
pβe−µτS (t) − (µ+ r)

]
6 I (t)

[
pβe−µτ − (µ+ r)

]
= I(t)(µ+ r) (R0 − 1) .

So we obtain

dL

dt
6 0,

for R0 < 1. If the fact dLdt = 0 at the point P0 is used, this shows that the function L is a Lyapunov function
in Ψ for system (2.2). According to LaSalle’s Invariance Principle the limit set of each solution is contained
in the largest invariant subset of {

(S, I) :
dL

dt
= 0
}

.

Also the largest invariant subset consists only singleton P0 for R0 < 1. Hence P0 is globally asymptotically
stable.

Theorem 3.4. The endemic equilibrium P∗ is locally asymptotically stable in the positively invariant region Ψ if
R0 > 1.

Proof. The Jacobian matrix at the endemic equilibrium P∗ of the system (2.2) is

J(P∗) =

 −µ−βI∗ + (1 − p)βe−µτI∗ −βS∗ + (1 − p)βe−µτS∗ + r

pβe−µτI∗ pβe−µτS∗ − (µ+ r)


=

 −µ− µ (R0 − 1) β
R0

[(1 − p) e−µτ − 1] + r

µ(R0−1)pe−µτ
1−(1−p)e−µτ 0

 .

Since R0 > 1, it can be easily seen that tr (J(P∗)) = −µ− µ (R0 − 1) < 0. Also taking into account that
(1 − p) e−µτ < 1 then we obtain
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det (J(P∗)) =
βµ (R0 − 1)pe−µτ

R0
+
rµ (R0 − 1)pe−µτ

(1 − p) e−µτ − 1

= pe−µτµ (R0 − 1)
(
β

R0
+

r

(1 − p) e−µτ − 1

)
= pe−µτµ (R0 − 1)

(
µ+ r

pe−µτ
+

r

(1 − p) e−µτ − 1

)
= µ (R0 − 1)

(
(µ+ r) (e−µτ − 1) − µpe−µτ

(1 − p) e−µτ − 1

)
> 0.

So the characteristic equation of J(P∗) has two negative roots. Therefore, if R0 > 1 then the disease-free
equilibrium P∗ is locally asymptotically stable.

On the other hand we focus the persistence of the model (2.2) for R0 > 1. Before starting to do this,
it may be necessary to remember some concepts about the persistence which is a property of dynamical
systems that describe the long-term behavior of the solutions.

Definition 3.5. [28] Let X be nonempty set, ρ : X→ R+ and Φ : R+ ×X→ X be a semiflow. Then

1. Φ is called uniformly weakly ρ−persistent, if there exists some ε > 0 such that

lim sup
t→∞ ρ (Φ (t, x)) > ε,

for all x ∈ X and ρ (x) > 0.
2. Φ is called uniformly strongly ρ−persistent, if there exists some ε > 0 such that

lim inf
t→∞ ρ (Φ (t, x)) > ε,

for all x ∈ X and ρ (x) > 0.
3. A set M ⊂ X is called weakly ρ−repelling if there is no x ∈ X such that ρ (x) > 0 and Φ (t, x) →M

as t→∞.

Theorem 3.6. Let Φ be the semiflow on Ψ, defined by unique global solutions. Also let the persistence function
ρ : Ψ→ R+ be defined as ρ (x) = x2 (0). Then Φ is uniformly strongly ρ−persistent for R0 > 1.

Proof. Firstly let us divide the invaryant set Ψ to nonintersecting two parts as

Ψ0 = {x ∈ Ψ : ρ (x) = 0} and Ψ+ = Ψ \Ψ0.

Assume that there exists x ∈ Ψ such that ρ (x) > 0 and lim
t→∞Φ (t, x) = P0, that is x2 (0) = I (0) > 0 and

I (t) → 0 as t → ∞. This means that for any ε > 0 there exists a T1 > 0 such that βI (t) < ε for all t > T1.
Also, in view of R0 > 1, there exists a T2 > 0 such that

sup
t>T2

I (t+ τ)

I (t)
< R0.

On the other hand, since S and I are nonnegative and smaller than 1 we can write

S′ (t) = µ(1 − S(t)) −βS (t) I (t) + (1 − p)βS (t− τ) I (t− τ) e−µτ + rI (t)

> µ(1 − S(t)) −βS (t) I (t)

> µ(1 − S(t)) −βI (t) ,

from (2.2). Then we get S′ (t) > µ(1 − S(t)) − ε for t > T1 and so

lim inf
t→∞ S (t) > 1 −

ε

µ
.

From the last relation we conclude that there exists at least one T3 > T2 such that

S (t)R0 −
I (t+ τ)

I (t)
> 0,

holds for t > T3. So, if we choose T as T = max {T1, T3} then we have



Ü. Çakan, Math. Nat. Sci., 7 (2021), 16–25 24

I′ (t+ τ) = pβS (t) I (t) e−µτ − (µ+ r) I (t+ τ)

= (µ+ r) I (t)

(
pβS (t) e−µτ

µ+ r
−
I (t+ τ)

I (t)

)
= (µ+ r) I (t)

(
S (t)R0 −

I (t+ τ)

I (t)

)
> 0.

for t > T . It can be easly seen that this result contradicts with the assumption I (0) > 0 and I (t) → 0 as
t → ∞. This means that the set {P0} ⊂ Ψ is weakly ρ−repelling. Taking into account that the sets Ψ0 and
Ψ+ are forward invariant under Φ, it can be conclude that Φ is uniformly weakly ρ−persistent by using
the method in [3]. Finally we can state that Φ is uniformly strongly ρ−persistent from the similar case
given in [3].

4. Conclusion

As is known, transitions between integral equations and differential equations are possible. Thus, in
the mathematical modeling of real life problems, besides differential equations, integral equations can be
widely used.

In this study, in which the spread of epidemic diseases in which immunity does not occur after
recovery with the incubation period has been mathematically analyzed, a compartmental model has been
introduced with the appropriate choosing of known functions in an integral equation.

Unlike the assumption that all exposed individuals transfer to the infectious class, which is valid
in classical SEIS models, in the model presented in this study, after the incubation period, exposed
individuals either transfer to the infectious class (at rate p ) or return to the susceptible class (at rate
1 − p ).

After the equilibrium points and the basic reproduction number have been obtained, stability of the
presented model has been analyzed. It has been proven that the disease-free equilibrium point is locally
and globally stable. It has also been shown that the endemic equilibrium point is uniformly strongly
ρ−persistent, as well as its local stability. In the model, it is assumed that individuals exposed to the
pathogen become infectious at a certain rate (p) at the end of the incubation period (τ) and the remaining
individuals transfer to the susceptible class again.

Let we consider a population with the assumptions; N (t) = 7× 107, µ = 0.000015, β = 5× 10−6,
r = 0.2 and τ = 14. Then the course of the number of infectious for different values of the p with the
estimated choosing of parameters has been presented in the simulation below. The figures have been
obtained by using the Wolfram Mathematica 12.1 with ”NDSolve” code.

Figure 1: Effect of different values of p.
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