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Abstract
We introduce the notion of generalized F−H−φ−ψ−ϕ− weakly contractive mappings and prove the existence of fixed

points of such mappings in complete metric spaces. We draw some corollaries and provide examples in support of our main
results. Our results extend the results of Cho [S. Cho, Fixed Point Theory Appl., 2018 (2018), 18 pages] and Choudhury, Konar,
Rhoades and Metiya [B. S. Choudhury, P. Konar, B. E. Rhoades, N. Metiya, Nonlinear Anal., 74 (2011), 2116–2126] in the sense
that the control function that we used in our results need not have monotonicity property.
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1. Introduction

In 1922, Banach established a theorem which is known as the Banach contraction principle in metric
spaces, which is the basic and fundamental result in fixed point theory. Because of its importance, many
authors improved, generalized and extended the result either by defining a new contractive mapping in
complete metric spaces or by investigating the character of the iterative sequence to provide the existence
of fixed points in different ambient spaces, for more details we refer [1, 6, 14, 17, 18].

In 2008, Dutta and Choudhury[11] introduced a new generalization of contraction condition by using
altering distance functions and proved the existence of its fixed points in complete metric spaces.

In 2009, Zhang and Song[21] introduced generalized ϕ−contraction for a pair of mappings and proved
the existence of its common fixed points. In the same year, with the idea of the results of Dutta and
Choudhury[11], Doric[10] established a fixed point theorem which is the generalization of the results of
[21], for more details we refer [8, 9].

In 2012, Samet, Vetro and Vetro [20] introduced the notion of α−ψ−contractive and α−admissible
mappings and proved the fixed point theorems in complete metric spaces. Further, using the notion of
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α−admissible mappings many authors extended it to a pair of mappings and generalized many known
fixed point theorems including the Banach contraction principle, for more details we refer [12, 13, 15, 16,
19].

In 2017, Ansari, Dolicanin-Djekic, Dosenovic and Radenovic [3] introduced new functions and us-
ing the concept of α−admissible and µ−subadmissible mappings they proved fixed point theorems and
coupled coincidence point theorems in metric spaces, for more details we refer [4, 5].

In 2018, Cho [7] introduced the notion of generalized weakly contractive mappings in metric spaces
and proved a fixed point theorem for generalized weakly contractive mappings in complete metric spaces,
and it generalizes the results of [11, 21].

Throughout this paper, we denote the real line by R, R+ = [0,∞), and N is the set of all natural
numbers.

In this paper, motivated and inspired by the works of Cho [7] and Ansari, Dolicanin-Djekic, Dosenovic
and Radenovic [3], we introduce the notion of generalized F−H−φ−ψ−ϕ−weakly contractive map-
pings in metric spaces and prove the existence of fixed points of generalized F−H−φ−ψ−ϕ−weakly
contractive mappings in complete metric spaces.

In Section 2, we present basic definitions, lemmas, theorems that are needed to develop our main
results, and we introduce the notion of generalized F−H−φ−ψ−ϕ−weakly contractive mappings in
metric spaces. In Section 3, we prove the existence of fixed points of generalized F−H−φ−ψ−ϕ−weakly
contractive mappings in complete metric spaces and in Section 4, we draw some corollaries and provide
examples to illustrate our main results.

2. Preliminaries

Theorem 2.1 ([10]). Let (X,d) be a complete metric space and S, T : X→ X be two functions such that

ψ(d(Tx,Sy)) 6 ψ(M(x,y)) −φ(M(x,y)),

for all x,y ∈ X, where

(i) ψ : R+ → R+ is a continuous monotone nondecreasing function with ψ(t) = 0 ⇐⇒ t = 0.
(ii) φ : R+ → R+ is a lower semicontinuous function with φ(t) = 0 ⇐⇒ t = 0.

(iii) M(x,y) = max{d(x,y),d(Tx, x),d(Sy,y), 1
2 [d(y, Tx) + d(x,Sy)]}.

Then there exists a unique point u ∈ X such that Tu = u = Su.

In 2011, Choudhury, Konar, Rhoades and Metiya [9] introduced the notion of generalized weakly
contractive mapping as follows.

Definition 2.2 ([9]). Let (X,d) be a metric space, T a self-mapping of X. We shall call T a generalized
weakly contractive mapping if for any x,y ∈ X,

ψ(d(Tx, Ty)) 6 ψ(m(x,y)) −φ(max{d(x,y),d(y, Ty)}),

where

(i) ψ : R+ → R+ is a continuous monotone increasing function with ψ(t) = 0 ⇐⇒ t = 0.
(ii) φ : R+ → R+ is a continuous function with φ(t) = 0 ⇐⇒ t = 0.

(iii) m(x,y) = max{d(x,y),d(x, Tx),d(y, Ty), 1
2 [d(x, Ty) + d(y, Tx)]}.

Theorem 2.3 ([9]). Let (X,d) be a complete metric space, T a generalized weakly contractive self-mapping of X.
Then T has a unique fixed point.

Definition 2.4 ([20]). Let T be a self mapping on X and let α : X×X→ R+ be a function. We say that T is
α−admissible mapping if for any x,y ∈ X with α(x,y) > 1 =⇒ α(Tx, Ty) > 1.
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Definition 2.5 ([19]). Let T be a self mapping on X and let µ : X×X→ R+ be a function. We say that T is
µ−subadmissible mapping if for any x,y ∈ X with µ(x,y) 6 1 =⇒ µ(Tx, Ty) 6 1.

In 2014, Ansari [2] introduced the concept of C−class functions and many authors proved the gener-
alizations of many important results in fixed point theory under the consideration of C−class function as
a main source.

Definition 2.6 ([2]). A mapping G : R+ ×R+ → R is called a C−class function if it is continuous and for
any s, t ∈ R+ the function G satisfies the following conditions:

(i) G(s, t) 6 s.
(ii) G(s, t) = s implies that either s = 0 or t = 0.

The family of all C−class functions is denoted by ζ.

The following functions belong to ζ.

(i) G(s, t) = s− t for any s, t ∈ R+.
(ii) G(s, t) = ks for any s, t ∈ R+ where 0 < k < 1.

(iii) G(s, t) = s
(1+t)r for any s, t ∈ R+ where r ∈ R+.

(iv) G(s, t) = sβ(s) for any s, t ∈ R+ where β : R+ → [0, 1) is continuous.
(v) G(s, t) = s−φ(s) for any s, t ∈ R+ where φ : R+ → R+ is continuous and φ(t) = 0 if and only if

t = 0.
(vi) G(s, t) = sh(s, t) for any s, t ∈ R+ where h : R+ ×R+ → R+ is continuous such that h(s, t) < 1 for

any s, t ∈ R+.

Definition 2.7 ([3]). A function H : R×R+ → R is a function of subclass of type I if it is continuous and
x > 1 =⇒ H(1,y) 6 H(x,y) for any x ∈ R,y ∈ R+.

The following are the examples of function of subclass of type I for any x ∈ R,y ∈ R+ :

(i) H(x,y) = (y+ l)x, l > 1.
(ii) H(x,y) = (x+ l)y, l > 1.

(iii) H(x,y) = xyn.
(iv) H(x,y) = xy.
(v) H(x,y) = y.

Definition 2.8 ([3]). Let F : R+ ×R+ → R be a mapping. We say that the pair (F,H) is a upclass of type I
if F is continuous, H is a function of subclass of type I and satisfies

(i) 0 6 x 6 1 =⇒ F(x,y) 6 F(1,y).
(ii) H(1,y1) 6 F(x,y2) =⇒ y1 6 xy2 for any x,y,y1,y2 ∈ R+.

The following are the examples of function of upper class of type I for any x ∈ R,y, s, t ∈ R+ :

(i) H(x,y) = (y+ l)x, l > 1, F(s, t) = st+ l.
(ii) H(x,y) = (x+ l)y, l > 1, F(s, t) = (1 + l)st.

(iii) H(x,y) = xyn, F(s, t) = sntn.
(iv) H(x,y) = xy, F(s, t) = st.
(v) H(x,y) = y, F(s, t) = st.

Definition 2.9 ([3]). Let F : R+ ×R+ → R be a mapping. We say that the pair (F,H) is a special upclass
of type I if F is continuous, H is a function of subclass of type I and satisfies :

(i) 0 6 s 6 1 =⇒ F(s, t) 6 F(1, t).
(ii) H(1,y) 6 F(1, t) =⇒ y 6 t for any y, s, t ∈ R+.
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The following are the examples of function of special upclass of type I for any x ∈ R,y, s, t ∈ R+ :

(i) H(x,y) = (yk + l)x
n

, l > 1, F(s, t) = smtk + l.
(ii) H(x,y) = (xn + l)y

k
, l > 1, F(s, t) = (1 + l)s

mtk .
(iii) H(x,y) = xnyk, F(s, t) = sptk.
(iv) H(x,y) = xy, F(s, t) = st.
(v) H(x,y) = y, F(s, t) = st.

Remark 2.10 ([3]). Each pair (F,H) of upclass of type I is a pair (F,H) of special upclass of type I, but its
converse is not true.

Definition 2.11 ([7]). Let (X,d) be a metric space, T a self-mapping of X. Then T is called a generalized
weakly contractive mapping in the sense of Cho, if for any x,y ∈ X,

ψ(d(Tx, Ty) +ϕ(Tx) +ϕ(Ty)) 6 ψ(m(x,y,d, T ,ϕ)) −φ(l(x,y,d, T ,ϕ)),

where

(i) ψ : R+ → R+ is a continuous function and ψ(t) = 0 ⇐⇒ t = 0.
(ii) φ : R+ → R+ is a lower semicontinuous function and φ(t) = 0 ⇐⇒ t = 0.

(iii) m(x,y,d, T ,ϕ) = max{d(x,y) +ϕ(x) +ϕ(y),d(x, Tx) +ϕ(x) +ϕ(Tx),d(y, Ty) +ϕ(y) +ϕ(Ty),
1
2 [d(x, Ty) +ϕ(x) +ϕ(Ty) + d(y, Tx) +ϕ(y) +ϕ(Tx)]}.

(iv) l(x,y,d, T ,ϕ) = max{d(x,y) +ϕ(x) +ϕ(y),d(y, Ty) +ϕ(y) +ϕ(Ty)}.
(v) ϕ : X→ R+ is a lower semicontinuous function.

Theorem 2.12 ([7]). Let X be a complete metric space. If T is a generalized weakly contractive mapping, then there
exists a unique z ∈ X such that z = Tz and ϕ(z) = 0.

We denote Ψ = {ψ : R+ → R+ | ψ is continuous and ψ(t) = 0 ⇐⇒ t = 0}.
Based on the results of [2, 7] and new functions of [3], we introduce the notion of generalized F−H−

φ−ψ−ϕ−weakly contractive mappings in metric spaces as follows.

Definition 2.13. Let (X,d) be a metric space. Let G be a C−class function such that G(R+, R+) ⊆ R+. Let
T : X→ X be a function. If there exist α,µ : X×X→ R+, F : R+×R+ → R and H : R×R+ → R such that

H(α(x, Tx)α(y, Ty),ψ(d(Tx, Ty) +ϕ(Tx) +ϕ(Ty))) 6 F(µ(x, Tx)µ(y, Ty),G(ψ(M(x,y)),φ(N(x,y)))),
(2.1)

for any x,y ∈ X, where ψ,φ ∈ Ψ, ϕ : X→ R+ is lower semicontinuous function,

M(x,y) = max{d(x,y) +ϕ(x) +ϕ(y),d(x, Tx) +ϕ(x) +ϕ(Tx),d(y, Ty) +ϕ(y) +ϕ(Ty),
1
2
[d(x, Ty) +ϕ(x) +ϕ(Ty) + d(y, Tx) +ϕ(y) +ϕ(Tx)]},

and
N(x,y) = max{d(x,y) +ϕ(x) +ϕ(y),d(y, Ty) +ϕ(y) +ϕ(Ty)}, then we call T is a generalized F−H−φ−
ψ−ϕ−weakly contractive mapping.

Example 2.14. Let X = [0, 2] with usual metric.
We define H : R×R+ → R, F,G : R+ ×R+ → R by H(x,y) = xy

2 , F(s, t) = st and

G(s, t) =
{
s− t, if s > t,
0, otherwise,
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for any x ∈ R,y, s, t ∈ R+.
We define ϕ : X→ R+ by

ϕ(x) =

{
x, if 0 6 x < 1,
x
4 , if x > 1,

for any x ∈ X. Clearly ϕ is lower semicontinuous.
We define T : X→ X, α,µ : X×X→ R+ by T(x) = x2

6−2x ,

α(x,y) =
{ 1

2 , if x > y,
0, otherwise,

and

µ(x,y) =
{ √

2, if x > y,
2, otherwise,

for any x,y ∈ X.
We define ψ,φ : R+ → R+ by ψ(t) = t and φ(t) = t

t+4 for any t ∈ R+. Clearly ψ,φ ∈ Ψ. Without loss
of generality, we assume that x > y. We consider

d(Tx, Ty) +ϕ(Tx) +ϕ(Ty) 6 d(Tx, Ty) + Tx+ Ty = 2 Tx = 2
x2

6 − 2x
=

x2

3 − x
,

and hence ψ(d(Tx, Ty) +ϕ(Tx) +ϕ(Ty)) 6 ψ( x
2

3−x) =
x2

3−x . Since x,y ∈ [0, 2] we have x > Tx and y > Ty.
Therefore

α(x, Tx)α(y, Ty)ψ(d(Tx, Ty) +ϕ(Tx) +ϕ(Ty)) 6
x2

12 − 4x
,

and hence

H(α(x, Tx)α(y, Ty),ψ(d(Tx, Ty) +ϕ(Tx) +ϕ(Ty))) 6
x2

24 − 8x
. (2.2)

We consider

M(x,y) = max{d(x,y) +ϕ(x) +ϕ(y),d(x, Tx) +ϕ(x) +ϕ(Tx),d(y, Ty) +ϕ(y) +ϕ(Ty),
1
2
[d(x, Ty) +ϕ(x) +ϕ(Ty) + d(y, Tx) +ϕ(y) +ϕ(Tx)]}

> d(x, Tx) +ϕ(x) +ϕ(Tx)

>
d(x, Tx)

4
+
x

4
+
Tx

4
=
x

2
.

Therefore
ψ(M(x,y)) > ψ(

x

2
) =

x

2
. (2.3)

We consider

N(x,y) = max{d(x,y) +ϕ(x) +ϕ(y),d(y, Ty) +ϕ(y) +ϕ(Ty)}
6 max{d(x,y) + x+ y, d(y, Ty) + y+ Ty}
= max{2x, 2y}
= 2x.
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Therefore
φ(N(x,y)) 6 φ(2x) =

2x
2x+ 4

. (2.4)

From (2.3) and (2.4), we get

ψ(M(x,y)) −φ(N(x,y)) >
x

2
−

2x
2x+ 4

=
x2

2x+ 4
.

We consider

F(µ(x, Tx)µ(y, Ty),G(ψ(M(x,y)),φ(N(x,y))))
= F(µ(x, Tx)µ(y, Ty),ψ(M(x,y)) −φ(N(x,y)))

(since ψ(M(x,y)) >
x

2
>

2x
2x+ 4

> φ(N(x,y))))

= µ(x, Tx)µ(y, Ty)(ψ(M(x,y)) −φ(N(x,y)))

> 2
x2

2x+ 4
=

x2

x+ 2

>
x2

24 − 8x
(since x ∈ [0, 2])

> H(α(x, Tx)α(y, Ty),ψ(d(Tx, Ty) +ϕ(Tx) +ϕ(Ty))).

Therefore the inequality (2.1) is satisfied.

Remark 2.15. In Example 2.14, H(1,y) = y
2 , F(1, t) = t. We observe that if H(1,y) 6 F(1, t) then y 6 2t for

any y, t ∈ R+ and hence the pair (F,H) is not a special upclass of type I.

The following proposition and lemma are useful in the subsequent discussion in proving our main
results.

Proposition 2.16. If {an} and {bn} are two real sequences, {bn} is bounded, then

lim inf(an + bn) 6 lim infan + lim supbn.

Lemma 2.17 ([6]). Let {xn} be a sequence in X such that d(xn, xn+1) → 0 as n → ∞. If {xn} is not a Cauchy
sequence then there exists an ε > 0 and sequences of positive integers {mk} and {nk} with mk > nk > k such that
d(xmk

, xnk) > ε,d(xmk−1, xnk) < ε and

(i) lim
k→∞d(xmk−1, xnk+1) = ε.

(ii) lim
k→∞d(xmk

, xnk) = ε.

(iii) lim
k→∞d(xmk−1, xnk) = ε.

3. Existence of fixed points

Theorem 3.1. Let (X,d) be a complete metric space. Let T : X→ X be a function such that

(i) T is a generalized F−H−φ−ψ−ϕ−weakly contractive mapping.
(ii) T is an α−admissible and µ−subadmissible mapping.

(iii) the pair (F,H) is a special uplcass of type I.
(iv) if {xn} is any sequence in X such that α(xn, xn+1) > 1,µ(xn, xn+1) 6 1 and {xn}→ z for any n ∈N∪ {0}

then α(z, Tz) > 1 and µ(z, Tz) 6 1.

Assume that there exists x0 ∈ X such that α(x0, Tx0) > 1 and µ(x0, Tx0) 6 1. Then there exists u ∈ X such that
Tu = u and ϕ(u) = 0. Further, if there exists y0 ∈ X such that α(y0, Ty0) > 1 and µ(y0, Ty0) 6 1. Then there
exists v ∈ X such that Tv = v and ϕ(v) = 0. In this case, v = u, that is the fixed point u is unique in this sense.
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Proof. Let x0 ∈ X. We define a sequence {xn} in X such that Txn = xn+1, for any n ∈N∪ {0}. If xn = xn+1
for some n ∈ N ∪ {0}, then xn = xn+1 = Txn. Therefore T has a fixed point. Assume that xn 6= xn+1 for
any n ∈N∪ {0}. From our assumption, we have α(x0, x1) > 1 and µ(x0, x1) 6 1. Since T is an α−admissible
and µ−subadmissible mapping, we have α(Tx0, Tx1) > 1 and µ(Tx0, Tx1) 6 1, that is α(x1, x2) > 1 and
µ(x1, x2) 6 1. On continuing this process, we get

α(xn, xn+1) > 1 and µ(xn, xn+1) 6 1 for any n ∈N∪ {0}. (3.1)

We consider

H(1,ψ(d(xn+1, xn+2) +ϕ(xn+1) +ϕ(xn+2)))

= H(1,ψ(d(Txn, Txn+1) +ϕ(Txn) +ϕ(Txn+1)))

6 H(α(xn, Txn)α(xn+1, Txn+1),ψ(d(Txn, Txn+1) +ϕ(Txn) +ϕ(Txn+1)))

6 F(µ(xn, Txn)µ(xn+1, Txn+1),G(ψ(M(xn, xn+1)),φ(N(xn, xn+1))))

6 F(1,G(ψ(M(xn, xn+1)),φ(N(xn, xn+1)))).

This imples that

ψ(d(xn+1, xn+2) +ϕ(xn+1) +ϕ(xn+2)) 6 G(ψ(M(xn, xn+1)),φ(N(xn, xn+1))). (3.2)

We consider

M(xn, xn+1) = max{d(xn, xn+1) +ϕ(xn) +ϕ(xn+1),d(xn, Txn) +ϕ(xn) +ϕ(Txn),
d(xn+1, Txn+1) +ϕ(xn+1) +ϕ(Txn+1),
1
2
[d(xn, Txn+1) +ϕ(xn) +ϕ(Txn+1) + d(xn+1, Txn) +ϕ(xn+1) +ϕ(Txn)]}

6 max{d(xn, xn+1) +ϕ(xn) +ϕ(xn+1),d(xn+1, xn+2) +ϕ(xn+1) +ϕ(xn+2),
1
2
[d(xn, xn+1) +ϕ(xn) +ϕ(xn+1) + d(xn+1, xn+2) +ϕ(xn+1) +ϕ(xn+2)]}

= max{d(xn, xn+1) +ϕ(xn) +ϕ(xn+1),d(xn+1, xn+2) +ϕ(xn+1) +ϕ(xn+2)},

and

N(xn, xn+1) = max{d(xn, xn+1) +ϕ(xn) +ϕ(xn+1),d(xn+1, Txn+1) +ϕ(xn+1) +ϕ(Txn+1)}

= max{d(xn, xn+1) +ϕ(xn) +ϕ(xn+1), d(xn+1, xn+2) +ϕ(xn+1) +ϕ(xn+2)}.

Let us suppose d(xn, xn+1) +ϕ(xn) +ϕ(xn+1) < d(xn+1, xn+2) +ϕ(xn+1) +ϕ(xn+2). Then

M(xn, xn+1) = N(xn, xn+1) = d(xn+1, xn+2) +ϕ(xn+1) +ϕ(xn+2).

From (3.2) we have

ψ(d(xn+1, xn+2) +ϕ(xn+1) +ϕ(xn+2))

6 G(ψ(d(xn+1, xn+2) +ϕ(xn+1) +ϕ(xn+2)),φ(d(xn+1, xn+2) +ϕ(xn+1) +ϕ(xn+2)))

6 ψ(d(xn+1, xn+2) +ϕ(xn+1) +ϕ(xn+2)).

Therefore

G(ψ(d(xn+1, xn+2) +ϕ(xn+1) +ϕ(xn+2)),φ(d(xn+1, xn+2) +ϕ(xn+1) +ϕ(xn+2)))

= ψ(d(xn+1, xn+2) +ϕ(xn+1) +ϕ(xn+2)).

This implies that either ψ(d(xn+1, xn+2) + ϕ(xn+1) + ϕ(xn+2)) = 0 or φ(d(xn+1, xn+2) + ϕ(xn+1) +
ϕ(xn+2)) = 0. Therefore d(xn+1, xn+2) +ϕ(xn+1) +ϕ(xn+2) = 0. Hence xn+1 = xn+2 and ϕ(xn+1) =
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ϕ(xn+2) = 0, a contradiction. Therefore M(xn, xn+1) = N(xn, xn+1) = d(xn, xn+1) +ϕ(xn) +ϕ(xn+1).
Let dn = d(xn, xn+1)+ϕ(xn)+ϕ(xn+1). Then dn > dn+1 and hence the sequence {dn} is a decreasing se-
quence. Let lim

n→∞dn = r. From (3.2) we have ψ(dn+1) 6 G(ψ(dn),φ(dn)). On applying limits as n→∞,

we get ψ(r) 6 G(ψ(r),φ(r)) 6 ψ(r) and hence G(ψ(r),φ(r)) = ψ(r). This implies that either ψ(r) = 0 or
φ(r) = 0 and hence r = 0. Therefore{

lim
n→∞dn = lim

n→∞[d(xn, xn+1) +ϕ(xn) +ϕ(xn+1)] = 0.

That is, lim
n→∞d(xn, xn+1) = 0 and lim

n→∞ϕ(xn) = 0. (3.3)

We now show that the sequence {xn} is a Cauchy sequence. Suppose that the sequence {xn} is not a Cauchy
sequence. Then there exists ε > 0 and two subsequences {xnk} and {xmk

} of {xn} with mk > nk > k such
that d(xmk

, xnk) > ε and d(xmk−1, xnk) < ε. By Lemma 2.17 we have

lim
k→∞d(xmk

, xnk) = ε. (3.4)

By using the triangle inequality we have

ε 6 d(xmk
, xnk) 6 d(xmk

, xnk+1) + d(xnk+1, xnk).

Now by applying Proposition 2.16 with ak = d(xmk
, xnk+1) and bk = d(xnk+1, xnk) we have

ε 6 lim inf
k→∞ d(xmk

, xnk+1). (3.5)

Now by applying the triangle inequality we have

d(xmk
, xnk+1) 6 d(xmk

, xnk) + d(xnk , xnk+1).

On applying limit superior as k→∞ we get

lim sup
k→∞ d(xmk

, xnk+1) 6 ε. (3.6)

From (3.5) and (3.6) we get

ε 6 lim inf
k→∞ d(xmk

, xnk+1) 6 lim sup
k→∞ d(xmk

, xnk+1) 6 ε.

Therefore
lim
k→∞d(xmk

, xnk+1) = ε. (3.7)

By applying the triangle inequality we have

ε 6 d(xmk
, xnk) 6 d(xmk

, xmk+1) + d(xmk+1, xnk).

Now by applying Proposition 2.16 with ak = d(xmk+1, xnk) and bk = d(xmk
, xmk+1) we have

ε 6 lim inf
k→∞ d(xmk+1, xnk). (3.8)

By the triangle inequality we have

d(xmk+1, xnk) 6 d(xmk+1, xmk
) + d(xmk

, xnk).

On applying limit superior as k→∞ we get

lim sup
k→∞ d(xmk+1, xnk) 6 ε. (3.9)
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From (3.8) and (3.9) we get

ε 6 lim inf
k→∞ d(xmk+1, xnk) 6 lim sup

k→∞ d(xmk+1, xnk) 6 ε.

Therefore
lim
k→∞d(xmk+1, xnk) = ε. (3.10)

We have
ε 6 d(xmk

, xnk) 6 d(xmk
, xmk+1) + d(xmk+1, xnk+1) + d(xnk+1, xnk).

Now by applying Proposition 2.16 with ak = d(xmk+1, xnk+1) and bk = d(xmk
, xmk+1) + d(xnk+1, xnk)

we have
ε 6 lim inf

k→∞ d(xmk+1, xnk+1). (3.11)

Also, we have

d(xmk+1, xnk+1) 6 d(xmk+1, xnk) + d(xnk , xnk+1).

On applying limit superior as k→∞ we get

lim sup
k→∞ d(xmk+1, xnk+1) 6 ε. (3.12)

From (3.11) and (3.12) we get

ε 6 lim inf
k→∞ d(xmk+1, xnk+1) 6 lim sup

k→∞ d(xmk+1, xnk+1) 6 ε.

Therefore
lim
k→∞d(xmk+1, xnk+1) = ε. (3.13)

We consider

H(1,ψ(d(xmk+1, xnk+1) +ϕ(xmk+1) +ϕ(xnk+1))

= H(1,ψ(d(Txmk
, Txnk) +ϕ(Txmk

) +ϕ(Txnk))

6 H(α(xmk
, Txmk

)α(xnk , Txnk),ψ(d(Txmk
, Txnk) +ϕ(Txmk

) +ϕ(Txnk)))

6 F(µ(xmk
, Txmk

)µ(xnk , Txnk),G(ψ(M(xmk
, xnk)),φ(N(xmk

, xnk))))
6 F(1,G(ψ(M(xmk

, xnk)),φ(N(xmk
, xnk)))).

This imples that
ψ(d(xmk+1, xnk+1) +ϕ(xmk+1) +ϕ(xnk+1))

6 G(ψ(M(xmk
, xnk),φ(N(xmk

, xnk)))).
(3.14)

We now consider

M(xmk
, xnk) = max{d(xmk

, xnk) +ϕ(xmk
) +ϕ(xnk),d(xmk

, Txmk
) +ϕ(xmk

) +ϕ(Txmk
),

d(xnk , Txnk) +ϕ(xnk) +ϕ(Txnk),
1
2
[d(xmk

, Txnk) +ϕ(xmk
) +ϕ(Txnk) + d(xnk , Txmk

) +ϕ(xnk) +ϕ(Txmk
)]}

= max{d(xmk
, xnk) +ϕ(xmk

) +ϕ(xnk),d(xmk
, xmk+1) +ϕ(xmk

) +ϕ(xmk+1),
d(xnk , xnk+1) +ϕ(xnk) +ϕ(xnk+1),
1
2
[d(xmk

, xnk+1) +ϕ(xmk
) +ϕ(xnk+1) + d(xnk , xmk+1) +ϕ(xnk) +ϕ(xmk+1)]},
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and

N(xmk
, xnk) = max{d(xmk

, xnk) +ϕ(xmk
) +ϕ(xnk),d(xnk , Txnk) +ϕ(xnk) +ϕ(Txnk)}

= max{d(xmk
, xnk) +ϕ(xmk

) +ϕ(xnk),d(xnk , xnk+1) +ϕ(xnk) +ϕ(xnk+1)}.

On applying limits as k→∞, we get

lim
k→∞M(xmk

, xnk) = ε = lim
k→∞N(xmk

, xnk).

On applying limits as k→∞ to the equation (3.14), we get

ψ(ε) 6 G(ψ(ε),φ(ε)) 6 ψ(ε)

and hence ε = 0, a contradiction. Therefore the sequence {xn} is a Cauchy sequence.
Since X is complete, there exists u ∈ X such that xn → u as n → ∞. From (iv), we have α(u, Tu) > 1

and µ(u, Tu) 6 1.
Since ϕ is a lower semicontiuous function, we have ϕ(u) 6 lim

n→∞ infϕ(xn) = 0 and hence ϕ(u) = 0. We
now show that u is a fixed point of T . We consider

M(xn,u) = max{d(xn,u) +ϕ(xn) +ϕ(u),d(xn, Txn) +ϕ(xn) +ϕ(Txn),d(u, Tu) +ϕ(u) +ϕ(Tu),
1
2
[d(xn, Tu) +ϕ(xn) +ϕ(Tu) + d(u, Txn) +ϕ(u) +ϕ(Txn)]}

= max{d(xn,u) +ϕ(xn) +ϕ(u),d(xn, xn+1) +ϕ(xn) +ϕ(xn+1),d(u, Tu) +ϕ(u) +ϕ(Tu),
1
2
[d(xn, Tu) +ϕ(xn) +ϕ(Tu) + d(u, xn+1) +ϕ(u) +ϕ(xn+1)]},

and

N(xn,u) = max{d(xn,u) +ϕ(xn) +ϕ(u),d(u, Tu) +ϕ(u) +ϕ(Tu)}.

On applying limits as n→∞, we get

lim
n→∞M(xn,u) = d(u, Tu) +ϕ(Tu) = lim

n→∞N(xn,u).

We now consider

H(1,ψ(d(xn+1, Tu) +ϕ(xn+1) +ϕ(Tu)))

= H(1,ψ(d(Txn, Tu) +ϕ(Txn) +ϕ(Tu)))
6 H(α(xn, Txn)α(u, Tu),ψ(d(Txn, Tu) +ϕ(Txn) +ϕ(Tu)))
6 F(µ(xn, Txn)µ(u, Tu),G(ψ(M(xn,u)),φ(N(xn,u)))))
6 F(1,G(ψ(M(xn,u)),φ(N(xn,u)))).

This imples that

ψ(d(xn+1, Tu) +ϕ(xn+1) +ϕ(Tu)) 6 G(ψ(M(xn,u)),φ(N(xn,u))). (3.15)

On applying limits as n→∞, we get

ψ(d(u, Tu) +ϕ(Tu)) 6 G(ψ(d(u, Tu) +ϕ(Tu)),φ(d(u, Tu) +ϕ(Tu))) 6 ψ(d(u, Tu) +ϕ(Tu)).

From the definition of C−class function, we get ψ(d(u, Tu) +ϕ(Tu)) = 0 or φ(d(u, Tu) +ϕ(Tu)) = 0 and
hence d(u, Tu) = ϕ(Tu) = 0. Therefore Tu = u and ϕ(u) = 0. Now, if y0 ∈ X is such that α(y0, Ty0) > 1
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and µ(y0, Ty0) 6 1 then by the above argument, it follows that there exists v ∈ X such that Tv = v and
α(v, Tv) > 1,µ(v, Tv) 6 1, and ϕ(v) = 0. We now show that v = u. We consider

H(1,ψ(d(u, v))) = H(1,ψ(d(u, v) +ϕ(u) +ϕ(v)))
= H(1,ψ(d(Tu, Tv) +ϕ(Tu) +ϕ(Tv)))
6 H(α(u, Tu)α(v, Tv),ψ(d(Tu, Tv) +ϕ(Tu) +ϕ(Tv)))
6 F(µ(u, Tu)µ(v, Tv),G(ψ(M(u, v)),φ(N(u, v))))
6 F(1,G(ψ(M(u, v)),φ(N(u, v)))).

Therefore ψ(d(u, v)) 6 G(ψ(M(u, v)),φ(N(u, v))) = G(ψ(d(u, v)),φ(d(u, v))) 6 ψ(d(u, v)).
Hence G(ψ(d(u, v)),φ(d(u, v))) = ψ(d(u, v)). From the definition of C− class function, we get either

ψ(d(u, v)) = 0 or φ(d(u, v)) = 0 and hence v = u. Therefore T has a unique fixed point u ∈ X and
ϕ(u) = 0.

4. Corollaries and examples

Corollary 4.1. Let (X,d) be a complete metric space. Let G(R+, R+) ⊆ R+. Let T : X→ X be a function. Assume
that

(i) there exist α,µ : X×X→ R+ and ψ,φ ∈ Ψ such that

[ψ(d(Tx, Ty) +ϕ(Tx) +ϕ(Ty)) + l]α(x,Tx)α(y,Ty) 6 µ(x, Tx)µ(y, Ty)G(ψ(M(x,y)),φ(N(x,y))) + l

for any x,y ∈ X, l > 1, where ϕ : X→ R+ is lower semicontinuous,

M(x,y) = max{d(x,y) +ϕ(x) +ϕ(y),d(x, Tx) +ϕ(x) +ϕ(Tx),d(y, Ty) +ϕ(y) +ϕ(Ty),
1
2
[d(x, Ty) +ϕ(x) +ϕ(Ty) + d(y, Tx) +ϕ(y) +ϕ(Tx)]},

N(x,y) = max{d(x,y) +ϕ(x) +ϕ(y),d(y, Ty) +ϕ(y) +ϕ(Ty)}.

(ii) T is an α−admissible and µ−subadmissible mapping.
(iii) (F,H) is a special uplcass of type I.
(iv) if {xn} is any sequence in X such that α(xn, Txn) > 1,µ(xn, Txn) > 1 and xn → z then α(z, Tz) > 1 and

µ(z, Tz) 6 1.

Assume that there exists x0 ∈ X such that α(x0, Tx0) > 1 and µ(x0, Tx0) 6 1. Then there exists u ∈ X such that
Tu = u and ϕ(u) = 0. Furthermore, if there exists y0 ∈ X such that α(y0, Ty0) > 1 and µ(y0, Ty0) 6 1 then there
exists v ∈ X such that Tv = v and ϕ(v) = 0. In this case, v = u, that is the fixed point u is unique in this sense.

Proof. Follows by choosing H(x,y) = (y+ l)x and F(s, t) = st+ l for any x ∈ R, y, s, t ∈ R+ in Theorem
3.1.

If H(x,y) = xy, F(s, t) = st for all x ∈ R,y, s, t ∈ R+,µ(x,y) = 1,ϕ(x) = 0 for all x,y ∈ X in Theorem
3.1, then we obtain the following.

Corollary 4.2. Let (X,d) be a complete metric space. Let G(R+, R+) ⊆ R+. Let T : X→ X be a function. Assume
that

(i) there exist α : X×X→ R+ and ψ,φ ∈ Ψ such that

α(x, Tx)α(y, Ty)ψ(d(Tx, Ty)) 6 G(ψ(M(x,y)),φ(N(x,y))),

for any x,y ∈ X, where

M(x,y) = max{d(x,y),d(x, Tx),d(y, Ty),
1
2
[d(x, Ty) + d(y, Tx)]}

and
N(x,y) = max{d(x,y),d(y, Ty)}.



G. V. Ravindranadh Babu, M. Vinod Kumar, Math. Nat. Sci., 7 (2021), 1–15 12

(ii) T is an α−admissible mapping.
(iii) if {xn} is any sequence in X such that α(xn, xn+1) > 1 and {xn}→ z then α(z, Tz) > 1.

Assume that there exists x0 ∈ X such that α(x0, Tx0) > 1. Then there exists u ∈ X such that Tu = u. Furthermore,
if there exists y0 ∈ X such that α(y0, Ty0) > 1 and µ(y0, Ty0) 6 1 then there exists v ∈ X such that Tv = v and
ϕ(v) = 0. In this case, v = u, that is the fixed point u is unique in this sense.

Corollary 4.3. Let (X,d) be a complete metric space. Let T : X → X be a function. Assume that there exist
ψ,φ ∈ Ψ such that ψ(t) > φ(s) whenever t > s and

ψ(d(Tx, Ty) +ϕ(Tx) +ϕ(Ty)) 6 ψ(M(x,y)) −φ(N(x,y)),

for any x,y ∈ X, where ϕ : X→ R+ is lower semicontinuous,

M(x,y) = max{d(x,y) +ϕ(x) +ϕ(y),d(x, Tx) +ϕ(x) +ϕ(Tx),d(y, Ty) +ϕ(y) +ϕ(Ty),
1
2
[d(x, Ty) +ϕ(x) +ϕ(Ty) + d(y, Tx) +ϕ(y) +ϕ(Tx)]},

N(x,y) = max{d(x,y) +ϕ(x) +ϕ(y),d(y, Ty) +ϕ(y) +ϕ(Ty)}.

Let x0 ∈ X. Then there exists a unique u ∈ X such that Tu = u and ϕ(u) = 0.

Proof. Follows by choosing

G(s, t) =
{
s− t, if s > t,
0, otherwise,

H(x,y) = xy, F(s, t) = st, for all x ∈ R,y, s, t ∈ R+ and α(x,y) = 1 = µ(x,y), for all x,y ∈ X in Theorem
3.1.

The proof of the following corollary is similar to that of Corollary 4.3.

Corollary 4.4. Let (X,d) be a complete metric space. Let T : X → X be a function. Assume that there exist
φ,ψ ∈ Ψ such that

ψ(d(Tx, Ty) +ϕ(Tx) +ϕ(Ty)) 6 ψ(M(x,y)) −φ(M(x,y))

for any x,y ∈ X, where ϕ : X→ R+ is lower semicontinuous,

M(x,y) = max{d(x,y) +ϕ(x) +ϕ(y),d(x, Tx) +ϕ(x) +ϕ(Tx),d(y, Ty) +ϕ(y) +ϕ(Ty),
1
2
[d(x, Ty) +ϕ(x) +ϕ(Ty) + d(y, Tx) +ϕ(y) +ϕ(Tx)]}.

Let x0 ∈ X. Then there exists a unique u ∈ X such that Tu = u and ϕ(u) = 0.

If ϕ = 0 in Corollary 4.3 then we obtain the following.

Corollary 4.5. Let (X,d) be a complete metric space. Let T : X → X be a function. Assume that there exist
ψ,φ ∈ Ψ such that ψ(t) > φ(s) for any t > s and

ψ(d(Tx, Ty)) 6 ψ(M(x,y)) −φ(N(x,y)),

for any x,y ∈ X, where

M(x,y) = max{d(x,y),d(x, Tx)),d(y, Ty),
1
2
[d(x, Ty) + d(y, Tx)]},

N(x,y) = max{d(x,y),d(y, Ty)}.

Let x0 ∈ X. Then there exists a unique u ∈ X such that Tu = u.
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We now present an example in support of Theorem 3.1.

Example 4.6. Let X = [0, 1] with usual metric. We define H : R×R+ → R, F,G : R+ ×R+ → R by
H(x,y) = xy, F(s, t) = st and

G(s, t) =
{
s− t, if s > t,
0, otherwise,

for any x ∈ R, y, s, t ∈ R+. We define ϕ : X→ R+ by

ϕ(x) =

{
x, if 0 6 x < 1

2 ,
x
2 , if x > 1

2 ,

for any x ∈ X. Clearly ϕ is lower semicontinuous. We define T : X → X, α,µ : X × X → R+ by
T(x) = x2

2[8−x] ,

α(x,y) =
{ √

2, if x > y,
0, otherwise,

and

µ(x,y) =

{
1√
3
, if x > y,

2, otherwise,

for any x,y ∈ X. First we show that T is α−admissible. Let x,y ∈ X be such that α(x,y) > 1. Then x > y.
Clearly x2

2[8−x] > y2

2[8−y] and hence Tx > Ty. Therefore α(Tx, Ty) > 1 and hence T is α−admissible
mapping. Similarly we can show that T is µ−subadmissible mapping. We define ψ,φ : R+ → R+ by
ψ(t) = 18t and φ(t) = 9t

1+4t for any t ∈ R+. Clearly ψ,φ ∈ Ψ. Without loss of generality, we assume that
x > y. We consider

d(Tx, Ty) +ϕ(Tx) +ϕ(Ty) 6 d(Tx, Ty) + Tx+ Ty = 2 Tx = 2
x2

2[8 − x]
=

x2

8 − x
,

and hence

ψ(d(Tx, Ty) +ϕ(Tx) +ϕ(Ty)) 6 ψ(
x2

8 − x
) =

18x2

8 − x
.

Since x,y ∈ [0, 1] we have x > Tx and y > Ty. Therefore

α(x, Tx)α(y, Ty)ψ(d(Tx, Ty) +ϕ(Tx) +ϕ(Ty)) 6
36x2

8 − x
. (4.1)

We consider

M(x,y) = max{d(x,y) +ϕ(x) +ϕ(y),d(x, Tx) +ϕ(x) +ϕ(Tx),d(y, Ty) +ϕ(y) +ϕ(Ty),
1
2
[d(x, Ty) +ϕ(x) +ϕ(Ty) + d(y, Tx) +ϕ(y) +ϕ(Tx)]}

> d(x, Tx) +ϕ(x) +ϕ(Tx)

>
d(x, Tx)

2
+
x

2
+
Tx

2
= x.

Therefore
ψ(M(x,y)) > ψ(x) = 18x. (4.2)
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We consider

N(x,y) = max{d(x,y) +ϕ(x) +ϕ(y),d(y, Ty) +ϕ(y) +ϕ(Ty)}
6 max{d(x,y) + x+ y, d(y, Ty) + y+ Ty}
= max{2x, 2y}
= 2x.

Therefore
φ(N(x,y)) 6 φ(2x) =

18x
1 + 8x

. (4.3)

From (4.2) and (4.3) we get

ψ(M(x,y)) −φ(N(x,y)) > 18x−
18x

1 + 8x
=

144x2

1 + 8x
.

We consider

F(µ(x, Tx)µ(y, Ty),G(ψ(M(x,y)),φ(N(x,y))))
= F(µ(x, Tx)µ(y, Ty),ψ(M(x,y)) −φ(N(x,y)))

(since ψ(M(x,y)) > 18x >
18x

1 + 8x
> φ(N(x,y)))

= µ(x, Tx)µ(y, Ty)(ψ(M(x,y)) −φ(N(x,y)))

>
1
3

144x2

1 + 8x

>
36x2

8 − x
(since x ∈ [0, 1])

> α(x, Tx)α(y, Ty)ψ(d(Tx, Ty) +ϕ(Tx) +ϕ(Ty))
= H(α(x, Tx)α(y, Ty),ψ(d(Tx, Ty) +ϕ(Tx) +ϕ(Ty))).

Let {xn} be any sequence such that α(xn, xn+1) > 1 for any n ∈ N ∪ {0}. Then xn > xn+1 for any
n ∈N∪ {0}. Therefore the sequence {xn} is a decreasing sequence and hence convergent. Let lim

n→∞ xn = z.

Since [0, 1] is complete we have z ∈ [0, 1]. Therefore z > Tz and hence α(z, Tz) > 1 and µ(z, Tz) 6 1. We
observe that α(x, Tx) > 1 and µ(x, Tx) 6 1 for any x ∈ X. Hence all the hypotheses of Theorem 3.1 hold
and 0 ∈ X is the unique fixed point of T with ϕ(0) = 0.

Acknowledgment

The authors would like to thank the honorable editor and referee for their valuable suggestions.

References

[1] Ya. I. Alber, S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces New results in Operator theory,
Adv. Appl., 98 (1997), 7–22. 1

[2] A. H. Ansari, Note on φ−ψ− contractive type mappings and related fixed point, The 2nd Regional Conference on
Mathematics and Applications, Payame Noor University Tehran, (2014), 377–380. 2, 2.6, 2

[3] A. H. Ansari, D. Dolicanin-Djekic, T. Dosenovic, S. Radenovic, Coupled coincidence point theorems for (α− µ−ψ−
H− F)−two sided contractive type mappings in partially ordered metric spaces using compatible mappings, Filomat, 31
(2017), 2657–2673. 1, 2.7, 2.8, 2.9, 2.10, 2

[4] A. H. Ansari, H. Isik, S. Radenovic, Coupled fixed point theorems for contractive mappings involving new function classes
and applications, Filomat, 31 (2017), 1893–1907. 1

[5] A. H. Ansari, J. Kaewcharoen, C−class functions and fixed point theorems for generalized α−η−ψ−φ− F−contraction
type mappings in α− η complete metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 4177–4190. 1

https://link.springer.com/chapter/10.1007/978-3-0348-8910-0_2
https://link.springer.com/chapter/10.1007/978-3-0348-8910-0_2
https://www.researchgate.net/publication/309033585_Note_on_ph-ps-contractive_type_mappings_and_related_fixed_point
https://www.researchgate.net/publication/309033585_Note_on_ph-ps-contractive_type_mappings_and_related_fixed_point
https://www.jstor.org/stable/26194999
https://www.jstor.org/stable/26194999
https://www.jstor.org/stable/26194999
https://www.jstor.org/stable/26194926
https://www.jstor.org/stable/26194926
https://www.emis.de/journals/TJNSA/includes/files/articles/Vol9_Iss6_4177--4190_C--class_functions_and_fixed_point.pdf
https://www.emis.de/journals/TJNSA/includes/files/articles/Vol9_Iss6_4177--4190_C--class_functions_and_fixed_point.pdf


G. V. Ravindranadh Babu, M. Vinod Kumar, Math. Nat. Sci., 7 (2021), 1–15 15

[6] G. V. R. Babu, P. D. Sailaja, A fixed point theorem of generalized weakly contractive maps in orbitally complete metric
space, Thai J. Math., 9 (2011), 1–10. 1, 2.17

[7] S. Cho, Fixed point theorems for generalized weakly contractive mappings in metric spaces with application, Fixed Point
Theory Appl., 2018 (2018), 18 pages. 1, 2.11, 2.12, 2

[8] B. S. Choudhury, Unique fixed point theorems for weakly C−Contractive mappings, Khatmandu University J. Sci. Tech.,
5 (2009), 6–13. 1

[9] B. S. Choudhury, P. Konar, B. E. Rhoades , N. Metiya, Fixed point theorems for generalized weakly contractive mappings,
Nonlinear Anal., 74 (2011), 2116–2126. 1, 2, 2.2, 2.3

[10] D. Doric, Common fixed point for generalized (ψ,φ)− weak contractions, Appl. Math. Lett., 22 (2009), 1896–1900. 1,
2.1

[11] P. N. Dutta, B. S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory Appl.,
2008 (2008), 8 pages. 1

[12] J. Hasanzade Asl, S. Rezapour, N. Shahzad, On fixed points of α−ψ−contractive multifunctions, Fixed Point Theory
Appl., 2012 (2012), Article 212, 6 pages. 1

[13] N. Hussain, M. A. Kutbi, P. Salimi, Fixed point theory in α−complete metric spaces with applications, Abstr. Appl.
Anal., 2014 (2014), 11 pages. 1

[14] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 10 (1968), 71–76. 1
[15] E. Karapinar, P. Kumam, P. Salimi, On α−ψ− Meir-Keeler contractive mappings, Fixed Point Theory Appl., 2013

(2013), 12 pages. 1
[16] H. Qawagneh, M. S. M. Noorani, W. Shatanawt, H. Alsamir, Common fixed points for pairs of triangular α−admissible

mappings, J. Nonlinear Sci. Appl., 10 (2017), 6192–6204. 1
[17] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226 (1977), 257–

290. 1
[18] B. E. Rhoades, Some theorems on weakly contractive mappings, Nonlinear Anal., 47 (2001), 2683–2693. 1
[19] P. Salimi, A. Latif, N. Hussain, Modified α−ψ− contractive mappings with applications, Fixed Point Theory Appl.,

2013 (2013), 19 pages. 1, 2.5
[20] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α−ψ−contractive type mappings, Nonlinear Anal., 75 (2012),

2154–2165. 1, 2.4
[21] Q. Zhang,Y. Song, Fixed point theory for generalized ϕ−weak contractions, App. Math. Letters, 22 (2009), 75–78. 1

http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/6
http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/6
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-018-0628-1
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-018-0628-1
https://www.nepjol.info/index.php/KUSET/article/view/2842
https://www.nepjol.info/index.php/KUSET/article/view/2842
https://www.sciencedirect.com/science/article/abs/pii/S0362546X10007959
https://www.sciencedirect.com/science/article/abs/pii/S0362546X10007959
https://www.sciencedirect.com/science/article/pii/S0893965909002821
https://fixedpointtheoryandapplications.springeropen.com/track/pdf/10.1155/2008/406368.pdf
https://fixedpointtheoryandapplications.springeropen.com/track/pdf/10.1155/2008/406368.pdf
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/1687-1812-2012-212
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/1687-1812-2012-212
https://www.hindawi.com/journals/aaa/2014/280817/
https://www.hindawi.com/journals/aaa/2014/280817/
https://www.jstor.org/stable/2316437
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/1687-1812-2013-94
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/1687-1812-2013-94
https://www.semanticscholar.org/paper/Common-fixed-points-for-pairs-of-triangular-Qawagneh-Noorani/d588b131293a684c2f0fb2461d9974b96fbafcfd
https://www.semanticscholar.org/paper/Common-fixed-points-for-pairs-of-triangular-Qawagneh-Noorani/d588b131293a684c2f0fb2461d9974b96fbafcfd
https://www.ams.org/journals/tran/1977-226-00/S0002-9947-1977-0433430-4/S0002-9947-1977-0433430-4.pdf
https://www.ams.org/journals/tran/1977-226-00/S0002-9947-1977-0433430-4/S0002-9947-1977-0433430-4.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0362546X01003881
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/1687-1812-2013-151
https://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/1687-1812-2013-151
https://www.sciencedirect.com/science/article/abs/pii/S0362546X1100705X
https://www.sciencedirect.com/science/article/abs/pii/S0362546X1100705X
https://www.sciencedirect.com/science/article/pii/S0893965908000888

	Introduction
	Preliminaries
	Existence of fixed points
	Corollaries and examples

