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Abstract
This paper studies a class of nonautonomous two-species ratio-dependent population system with stage structure. Some

sufficient conditions on the boundedness, permanence, extinction, and periodic solution of the system are established by using
the comparison method.
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1. Introduction and preliminaries

As we have well known, in recent years the population dynamical systems are extensively studied [1–
16]. Especially, the nonautonomous ratio-dependent population dynamical systems has been extensively
studied and excellent results were obtained[3, 4, 8–14]. Some of these studies described the dynamical
interactions between species by ratio-dependent terms [1, 4, 7, 12]. For example, May in [7] first suggested
the following set of equations:

u̇(t) = r1u(t)
[
1 − u(t)(a1 + b1υ(t))

−1 − c1u(t)
]
, υ̇(t) = r2υ(t)

[
1 − υ(t)(a2 + b2u(t))

−1 − c2υ(t)
]
, (1.1)

to describe interactions of cooperation, where u(t) and υ(t) represent the densities of two cooperative
species u and υ at time t, respectively.

Meanwhile, population models with stage structure have received much attention in recent years
[6, 11, 14, 16]. Most of the authors have investigated population competitive system with stage struc-
ture, population predator-prey system with stage structure and population cooperative system with stage
structure. Recently, Zhang et al. in [16], have studied the following nonautonomous stage-structured
cooperative periodic system without delay

ẋ1(t) = α(t)x2(t) − r1(t)x1(t) −β(t)x1(t) − η1(t)x
2
1(t),

ẋ2(t) = β(t)x1(t) − r2(t)x2(t) − η2(t)x
2
2(t) + b(t)x2(t)y(t),

ẏ(t) = y(t)[R(t) − a(t)y(t) + c(t)x2(t)].

(1.2)
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By using the Mawhin’s continuation theorem, the sufficient conditions on the existence of positive periodic
solutions were established for system (1.1). Based on systems (1.1) and (1.2), the authors in [9] consider
the following delayed ratio-dependent cooperative system with stage structure

ẋ1(t) = r1(t)x2(t) − d1(t)x1(t) − r1(t− τ)e
−
∫t
t−τ d1(s)dsx2(t− τ),

ẋ2(t) = r1(t− τ)e
−
∫t
t−τ d1(s)dsx2(t− τ) − d2(t)x

2
2(t) − c1(t)x2(t)

(
a1(t) + b1(t)y(t)

)−1,

ẏ(t) = y(t)
[
r2(t) − d(t)y(t) − c2(t)

(
a2(t) + b2(t)x2(t)

)−1].
(1.3)

By using the comparison method, the authors in [9] have obtained some sufficient conditions on the
permanence and extinction of system (1.3).

It is well known that, the environments of most natural populations undergo temporal variation,
causing changes in the growth characteristics of these populations. One of the methods of incorporating
temporal nonuniformity of the environments in models is to assume that the parameters are periodic
functions of time, [8]. In fact, during the last decade, the dynamics of periodic nonautonomous population
dynamical systems with stage-structures have been studied extensively in [2, 5, 13, 15] and the references
cited therein. To the best of our knowledge, studies on the periodic ratio-dependent population system
with stage structures have not been fully investigated.

Based on the above works and reasons, in this paper we propose and investigate the following nonau-
tonomous ratio-dependent periodic population system with stage structure

ẋ1(t) = α1(t)x2(t) − r1(t)x1(t) −β1(t)x1(t) − η1(t)x
2
1(t),

ẋ2(t) = β1(t)x1(t) − r2(t)x2(t) − η2(t)x
2
2(t) +

b1(t)x2(t)

e1(t)y2(t) + γ1(t)
,

ẏ1(t) = α2(t)y2(t) − c1(t)y1(t) −β2(t)y1(t) − d1(t)y
2
1(t),

ẏ2(t) = β2(t)y1(t) − c2(t)y2(t) − d2(t)y
2
2(t) +

b2(t)y2(t)

e2(t)x2(t) + γ2(t)
.

(1.4)

Our main purpose is to establish some sufficient conditions on the boundedness, permanence, extinction,
and periodic solution of system (1.4) by using the comparison method.

In system (1.4), x1, x2 represent immature and mature members of a species X while y1,y2 represent
immature and mature members of a species Y. x1(t) and y1(t) represent the density of immaturity of
species X and Y at time t, respectively, x2(t) and y2(t) represent the density of maturity of species X and
Y at time t, respectively. r1(t) and c1(t) represent the death rate of the immature of species X and Y,
respectively, and r2(t) and c2(t) represent the death rate of the mature of species X and Y, respectively.
α1(t) and α2(t) represent the birth rate of species X and Y, respectively. β1(t) and β2(t) represent the
change rate of species X and Y from the immature to mature, which is directly proportional to the density
of the immature. The terms b1(t)x2(t)

e1(t)y2(t)+γ1(t)
and b2(t)y2(t)

e2(t)x2(t)+γ2(t)
characterize the interactions between

species X and Y at time t.
In this paper, we always assume that

(H1) ri(t),ηi(t),αi(t),βi(t),bi(t), ci(t),di(t) (i = 1, 2) are all strictly positiveω-periodic continuous func-
tions with ω > 0;

(H2) ri(t),ηi(t),αi(t),βi(t),bi(t), ci(t),di(t) (i = 1, 2) are all strictly positive continuous functions.

From the viewpoint of mathematical biology, in this paper for system (1.4) we consider the solution with
the following initial condition

xi(t) = φi(t),yi(t) = ψi(t) for all t ∈ [0,+∞), i = 1, 2, (1.5)

where φi(t) (i = 1, 2),ψi(t) (i = 1, 2) are nonnegative continuous functions defined on [0,+∞) satisfying
φi(0) > 0 (i = 1, 2),ψi(0) > 0 (i = 1, 2).
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In this paper, for any ω-periodic continuous function f(t) we denote

fL = min
t∈[0,ω]

f(t), fM = max
t∈[0,ω]

f(t).

Now, we present some useful definition and lemmas.

Definition 1.1. System (1.4) is said to be permanent if there exist positive constants m,M, and T , such
that each positive solution (x1(t), x2(t),y1(t),y2(t)) of system (1.4) with any positive initial value ϕ, fulfill
m 6 xi(t) 6M(i = 1, 2), m 6 yi(t) 6M(i = 1, 2) for all t > T , where T may depend on ϕ.

Lemma 1.2 ([3]). If a(t),b(t), c(t),d(t), and f(t) are all ω-periodic, then system

ẋ1(t) = a(t)x2(t) − b(t)x1(t) − d(t)x
2
1(t), ẋ2(t) = c(t)x1(t) − f(t)x

2
2(t),

has a positive ω-periodic solution (x∗1(t), x
∗
2(t)) which is globally asymptotically stable in R2

+ = {(x1, x2) : x1 >

0, x2 > 0}.

Lemma 1.3 ([10]). If there exist positive constants m and M for any Φ ∈ Cn+[−τ, 0] such that

m < lim inf
t→∞ xi(t, 0,Φ) 6 lim sup

t→∞ xi(t, 0,Φ) < M, i = 1, 2, . . . ,n,

then the following general functional differential equation

dx

dt
= F(t, xt)

admits at least one positive ω-periodic solution. Where x(t) ∈ Rn and F(t, xt) is a n-dimensional continuous
functional, x(t, 0,Φ) = (x1(t, 0,Φ), x2(t, 0,Φ), . . . , xn(t, 0,Φ)) is a solution of the functional differential equation
with initial condition x0 = Φ.

2. Main results

In this section, we will obtain some sufficient conditions for the ultimately boundedness, permanence,
extinction, and existence of periodic solution of system (1.4).

Theorem 2.1. Assume that (H1) holds, then solutions of system (1.4) with initial condition (1.5) are ultimately
bounded from above.

Proof. Suppose that (x1(t), x2(t),y1(t),y2(t)) is any solution of (1.4) with initial condition (1.5). Defining
the function

W(t) = x1(t) + x2(t) + y1(t) + y2(t),

and calculating the derivative of W(t) along the positive solutions of system (1.2), we have

Ẇ(t) 6 αM1 x2(t) − r
L
1 x1(t) − η

L
1 x

2
1(t) − r

L
2 (t)x2(t) − η2(t)x

2
2(t) +

bM1
γL1
x2(t)

+αM2 y2(t) − c
L
1 y1(t) − d

Ly2
1(t) − c

L
2 (t)y2(t) − d2(t)y

2
2(t) +

bM2
γL2
y2(t).

Then

Ẇ(t) +A1W(t) 6 (αM1 +
bM1
γL1

)x2(t) − η
L
2 x

2
2(t) + (αM2 +

bM2
γL2

)y2(t) − d
L
2 y

2
2(t),

where A1 = min{rL1 , rL2 , cL1 , cL2 }. Then there exists a positive number A2 such that

Ẇ(t) +A1W(t) 6 A2,
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where A2 = 1
4

[(
αM1 +

bM1
γL1

ηL2

)2

+

(
αM2 +

bM2
γL2

dL2

)2
]

, which yields

W(t) 6
A2

A1
+ (W(0) −

A2

A1
)e−A1t.

Hence, there exist positive constant T0 and M = A2
A1

such that xi(t) 6M(i = 1, 2),yi(t) 6M(i = 1, 2) for
t > T0. This implies that any positive solutions of system (1.4) is ultimately bounded. This completes the
proof.

Theorem 2.2. Assume that (H1) holds and Bi > 0 (i = 1, 2), then system (1.4) is permanent, where B1 =
bL1 − rM2 (eM1 M+ γM1 ) and B2 = bL2 − cM2 (eM2 M+ γM2 ).

Proof. Suppose z(t) = (x1(t), x2(t),y1(t),y2(t)) is any positive solution of system (1.4) with initial con-
dition (1.5). Firstly, it follows from the first and second equation of system (1.4) and the condition of
positivity of B1 that for t > T0, we have

ẋ1(t) = α1(t)x2(t) − (r1(t) +β1(t))x1(t) − η1(t)x
2
1(t),

ẋ2(t) > β1(t)x1(t) − r
M
2 x2(t) − η2(t)x

2
2(t) +

bL1 x2(t)

eM1 M+ γM1
> β1(t)x1(t) − η2(t)x

2
2(t).

Now, we consider the following auxiliary equation

u̇1(t) = α1(t)u2(t) − (r1(t) +β1(t))u1(t) − η1(t)u
2
1(t),

u̇2(t) = β1(t)u1(t) − η2(t)u
2
2(t).

(2.1)

By Lemma 1.2, we have that system (2.1) has a unique globally attractive positive ω-periodic solution
(x̄1(t), x̄2(t)). Let (u1(t),u2(t)) be the solution of (2.1) with (u1(T1),u2(T1)) = ((x1(T1), x2(T1)), by compar-
ison theorem, we have

xi(t) > ui(t)(i = 1, 2), t > T1. (2.2)

Also from the global attractivity of (x̄1(t), x̄2(t)), there exists a constant T1 > 0, such that

|ui(t) − x̄i(t)| <
x̄i(t)

2
, t > T1. (2.3)

Inequality (2.3) combine with (2.2) leads to

xi(t) > min
06t6ω

{
x̄i(t)

2

}
=: mi, i = 1, 2, t > T1.

Therefore,
lim
t→+∞ inf xi(t) > mi, i = 1, 2.

Next, from the third and fourth equation of system (1.4) that for t > T0, we have

ẏ1(t) = α2(t)y2(t) − (c1(t) +β2(t))y1(t) − d1(t)y
2
1(t),

ẏ2(t) > β2(t)y1(t) − c
M
2 y2(t) − d2(t)y

2
2(t) +

bL2 y2(t)

eM2 M+ γM2
> β2(t)y1(t) − η2(t)y

2
2(t).

We consider the following auxiliary equation

u̇1(t) = α2(t)u2(t) − (c1(t) +β2(t))u1(t) − d1(t)u
2
1(t), u̇2(t) = β2(t)u1(t) − d2(t)u

2
2(t). (2.4)
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By Lemma 1.2, we have that system (2.4) has a unique globally attractive positive ω periodic solution
(ȳ1(t), ȳ2(t)). The rest of the proof is similar to the above discussion, we can obtain there exists a constant
T2 > 0, such that

yi(t) > min
06t6ω

{
ȳi(t)

2

}
=: mi+2, i = 1, 2, t > T2.

Therefore,
lim
t→+∞ infyi(t) > mi+2, i = 1, 2.

Finally, there exists a constant T > max{T0, T1, T2} such that xi(t) > m(i = 1, 2) and yi(t) > m(i = 1, 2),
where m = min{m1,m2,m3,m4} for t > T . This completes the proof of Theorem 2.2.

On the existence of positive periodic solutions of system (1.4) we have the following result. As a direct
result of Lemma 2, from Theorem 2, we have

Corollary 2.3. If the assumptions of Theorem 2.2 hold, then system (1.4) has at least one positive ω-periodic
solution.

Theorem 2.4. Immature species x1, y1 and mature species x2, y2 of system (1.1) become extinct if (H2) holds and

Ci > 0(i = 1, 2), where C1 = rL2 −αM1 −
bM1
γL1

and C2 = cL2 −αM2 −
bM2
γL2

.

Proof. Suppose (x1(t), x2(t),y1(t),y2(t)) is a positive solution of of system (1.4) with initial conditions
(1.5). Defining the function

V(t) = x1(t) + x2(t) + y1(t) + y2(t),

and calculating the derivative of V(t) along the positive solutions of system (1.4), we have

V̇(t) 6 α1(t)x2(t) − r1(t)x1(t) − r2(t)x2(t) +
b1(t)

γ1(t)
x2(t)

+α2(t)y2(t) − c1(t)y1(t) − c2(t)y2(t) +
b2(t)

γ2(t)
y2(t),

(2.5)

Then, it follows from (2.5) for t > T0

V̇(t) 6 −rL1 x1(t) − (rL2 −αM1 −
bM1
γL1

)x2(t) − c
L
1 y1(t) − (cL2 −αM2 −

bM2
γL2

)y2(t) 6 −kV(t),

where k = min{rL1 , cL1 ,C1,C2}, which yields

V(t) 6 V(0)e−kt.

Then we have

lim
t→+∞V(t) = lim

t→+∞(x1(t) + x2(t) + y1(t) + y2(t)) = 0. (2.6)

From (2.6) there exists a constant T∗ > 0 such that x1(t) → 0, x2(t) → 0, y1(t) → 0 and y2(t) → 0 for
t > T∗. This completes the proof.

3. Examples

Example 3.1. First, we consider the following system

ẋ1(t) = (0.15 + 0.15| sin(t)|)x2(t) − (0.85 + 0.5| sin(t)|)x1(t) − (1 + 0.5| sin(t)|)x1(t)

− (1 + 0.5| sin(t)|)x2
1(t),
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ẋ2(t) = (1 + | sin(t)|)x1(t) − (0.15 + 0.01| sin(t)|)x2(t) − (1 + 0.5| sin(t)|)x2
2(t)

+
(2 + 0.5| sin(t)|)x2(t)

(0.1 + 0.01| sin(t)|)y2(t) + 2 + 0.01| sin(t)|
,

ẏ1(t) = (0.15 + 0.15| sin(t)|)y2(t) − (0.75 + 0.5| sin(t)|)y1(t) − (1 + 0.5| sin(t)|)y1(t) (3.1)

− (1 + 0.5| sin(t)|)y2
1(t),

ẏ2(t) = (1 + | sin(t)|)y1(t) − (0.15 + 0.01| sin(t)|)y2(t) − (1 + 0.5| sin(t)|)y2
2(t)

+
(2 + 0.5| sin(t)|)y2(t)

(0.1 + 0.01| sin(t)|)x2(t) + 2 + 0.01| sin(t)|
.

By directly calculation we can get

A1 = 0.15, A2 ≈ 1.21, M ≈ 8.01, B1 = B2 ≈ 1.54 > 0.

It is clear that the conditions of Theorem 2.2 and Corollary 2.3 hold.
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Figure 1: Dynamics of system (3.1).

From the Fig. 1. we can see, system (3.1) is permanent and has a periodic solution.

Example 3.2. Next, we consider the following system

ẋ1(t) = (0.15 + 0.2| sin(t)|)x2(t) − (0.85 + 0.5| sin(t)|)x1(t) − (1 + 0.5| sin(t)|)x1(t)

− (1 + 0.5| sin(t)|)x2
1(t),

ẋ2(t) = (1 + | sin(t)|)x1(t) − (2.25 + 0.01| sin(t)|)x2(t) − (1 + 0.5| sin(t)|)x2
2(t)

+
(2 + 0.5| sin(t)|)x2(t)

(0.1 + 0.01| sin(t)|)y2(t) + 2 + 0.01| sin(t)|
,

ẏ1(t) = (0.15 + 0.25| sin(t)|)y2(t) − (0.75 + 0.5| sin(t)|)y1(t) − (1 + 0.5| sin(t)|)y1(t)

− (1 + 0.5| sin(t)|)y2
1(t),

ẏ2(t) = (1 + | sin(t)|)y1(t) − (2.35 + 0.01| sin(t)|)y2(t) − (1 + 0.5| sin(t)|)y2
2(t)

+
(2 + 0.5| sin(t)|)y2(t)

(0.1 + 0.01| sin(t)|)x2(t) + 2 + 0.01| sin(t)|
.

(3.2)

By directly calculation we can get

C1 ≈ 0.65 > 0, C1 ≈ 0.7 > 0.



A. Muhammadhaji, Math. Nat. Sci., 5 (2019), 20–28 27

It is clear that the conditions of Theorem 2.4 hold.
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Figure 2: Dynamics of system (3.2).

From the Fig. 2. we can see, species x1, x2, y1, and y2 in system (3.2) are go to extinction.
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