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Abstract
A single species stage structure system with feedback control is proposed and studied in this paper. Local and global

stability property of the boundary equilibrium and the positive equilibrium are investigated, respectively. If the original system
is globally stable, then we show that the feedback control only change the position of the unique positive equilibrium and retain
the stable property. If the original system is extinct, then we show that the system with feedback control is also extinct. Some
examples are presented to verify our main results.

Keywords: Stage structure, species, local stability, Lyapunov function, global stability.

2010 MSC: 34C25, 92D25.

c©2019 All rights reserved.

1. Introduction

The aim of this paper is to investigate the dynamic behaviors of the following single species stage
structure system with feedback control:

dx1

dt
= αx2 −βx1 − δ1x1,

dx2

dt
= βx1 − δ2x2 − γx

2
2 − dx2u,

du

dt
= −eu+ fx2, (1.1)

where α,β, δ1, δ2,d, e, f and γ are all positive constants, x1(t) and x2(t) are the densities of the immature
and mature species at time t, u is feedback control variable. The following assumptions are made in
formulating the model (1.1).

1. The per capita birth rate of the immature population is α > 0, the per capita death rate of the imma-
ture population is δ1 > 0, the per capita death rate of the mature populations is proportional to the
current mature populations with a proportionality constant δ2 > 0, β > 0 denotes the surviving rate
of immaturity to reach maturity, and the mature species is density dependent with the parameter
γ > 0.

2. The bilinear feedback mechanism (dx2u) is used to control the system.
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During the last decades, many scholars investigated the dynamic behaviors of the stage structured species,
see [1–44] and the references cited therein. Many new characters about the stage structured system were
found, for example, Ma et al. [31] proposed and studied the persistent property of the following stage-
structure predator-prey model

dx1(t)

dt
= r1(t)x2(t) − d11x1(t) − r1(t− τ1)e

−d11τ1x2(t− τ1),

dx2(t)

dt
= r1(t− τ1)e

−d11τ1x2(t− τ1) − d12x2(t) − b1(t)x
2
2(t) − c1(t)x2(t)y2(t),

dy1(t)

dt
= r2(t)y2(t) − d22y1(t) − r2(t− τ2)e

−d22τ2y2(t− τ2),

dy2(t)

dt
= r2(t− τ2)e

−d22τ2y2(t− τ2) − d21y2(t) − b2(t)y
2
2(t) + c2(t)y2(t)x2(t),

(1.2)

where x1(t) and x2(t) denote the densities of the immature and mature prey species at time t, respectively,
y1(t) and y2(t) represent the immature and mature population densities of predator species at time t,
respectively, Chen et al. [5], Chen et al. [11], and Chen et al. [9] further investigated the permanence,
extinction and global stability of the above system. They found that in system (1.2), the extinction of
the prey species does not follows the extinction of the predator species, they conjectured that maybe
the reason is in above system, the predator species has other food resource. Some other authors (see
[5, 9–11, 13, 22, 24–26, 28, 31, 34]) also applied the similar idea to establish the predator-prey model,
cooperative model, and competition model, and many interesting results were obtained. For example, it’s
well known that May type cooperative system admits a unique positive equilibrium, which is globally
attractive, however, Chen et al. [10] showed that with the introducing of the stage structure, May type
cooperative system may admits partial survival property, that is, despite the cooperative between the
species, the species may still be driven to the extinction due to the stage structure.

Recently, Khajanchi and Banerjee [23] proposed the following stage structure predator-prey model
with ratio dependent functional response

dx1

dt
= αx2(t) −βx1(t) − δ1x1(t),

dx2

dt
= βx1(t) − δ2x2(t) − γx

2
2(t) −

η(1 − θ)x2(t)y(t)

g(1 − θ)x2(t) + hy(t)
,

dy

dt
=

uη(1 − θ)x2(t)y(t)

g(1 − θ)x2(t) + hy(t)
− δ3y(t).

(1.3)

By constructing suitable Lyapunov function, the authors obtained a set of sufficient conditions which
ensure the uniform persistence and global asymptotic stability of the system. It bring to our attention
that in system (1.3), if we did not consider the predator species, then system (1.3) reduces to the following
single species stage structured system.

dx1

dt
= αx2(t) −βx1(t) − δ1x1(t),

dx2

dt
= βx1(t) − δ2x2(t) − γx

2
2(t). (1.4)

Obviously, O(0, 0) is the boundary equilibrium of the system (1.4). However, in system (1.3), with the
singularity of the ratio-dependent functional response, O(0, 0, 0) is not the equilibrium of the system, and
so, the authors of [23] did not consider the stability property of O(0, 0, 0). Already, in [40], Xiao and Lei
showed that under some suitable assumption, the boundary equilibrium O(0, 0) of system (1.4) is globally
asymptotically stable.

On the other hand, with the aim of alter the system structurally so as to make the population stabilize
at value lower than the original system. Gopalsamy and Weng [18] first time proposed the following
single species feedback control ecosystem

dn(t)

dt
= rn(t)

[
1 −

(a1n(t) + a2n(t− τ)

K
− cu(t)

)]
,
du(t)

dt
= −au(t) + bn(t− τ), (1.5)
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where a1,a2, c,a,b and τ are all positive constants. Such kind of ”feedback” control variable can be
implemented by means of a biological control or some harvesting procedure. By constructing some
suitable Lyapunov functional, they showed that under the assumption a1 > a2 > 0 holds, the system
admits a unique positive equilibrium. Also, in [5], under the assumption a1 = 0, the authors investigated
the stability property of the positive equilibrium. For the case a1 = 0, Gong et al. [17] investigated the
Hopf bifurcation of system (1.5). Recently, Li and He [29] also investigated the Hopf bifurcation of the
following single-species food-limited system with feedback control

du(t)

dt
= u(t)

(
r(K− u(t))

K+ au(t)
− cv(t− τ)

)
,
dv(t)

dt
= −dv(t) + bu(t− τ).

There are also many scholars argued that the non-autonomous case is more suitable. Chen et al. [12]
studied the persistent property of the following single species feedback ecosystem

dN(t)

dt
= r(t)N(t)

[
1 −

N2(t− τ1(t))

k2(t)
− c(t)u(t− τ2(t))

]
,

du(t)
dt

= −a(t)u(t) + b(t)N(t− τ3(t)).

In [12], by developing a new differential inequality, they showed that the system is always permanent.
Based on the famous single species model proposed by Aiello and Freedman, Ding and Cheng [14]
proposed the following single species stage-structured model with feedback control:

dx1(t)

dt
= αx2(t) − γx1(t) −αe

−γτx2(t− τ),

dx2(t)

dt
= αe−γτx2(t− τ) −βx

2
2(t) − cx2(t)u(t),

du(t)

dt
= −au(t) + bx2(t).

(1.6)

In [14], it was shown that if the inequality

aβ > bc (1.7)

holds, then x1(t) → x∗1 , x2(t) → x∗2 ,u(t) → u∗ as t→ +∞. This result is then generalized by Han et al. [19]
to the infinite delay case. Noting that without the feedback control variable, the system (1.6) is degenerate
to the following single species stage-structured system

dx1(t)

dt
= αx2(t) − γx1(t) −αe

−γτx2(t− τ),
dx2(t)

dt
= αe−γτx2(t− τ) −βx

2
2(t). (1.8)

Already, Aiello and Freedman [1] had showed that system (1.8) admits a unique positive equilibrium,
which is globally asymptotically stable. Hence, the result of Ding and Cheng [14] implies that under the
assumption (1.7), the feedback control variable could only change the position of the equilibrium and did
not change the stability property of the equilibrium. Recently, Li et al. [27] considered an autonomous
Lotka-Volterra competitive system with infinite delays and feedback controls

dx1(t)

dt
= x1(t)(b1 − a11x1(t) − a12

∫+∞
0

K1(s)x2(t− s)ds− c1u1(t)),

dx2(t)

dt
= x2(t)(b2 − a21

∫+∞
0

K2(s)x1(t− s)ds− a22x2(t) − c2u2(t)),

du1(t)

dt
= −e1u1(t) + d1x1(t),

du2(t)

dt
= −e2u2(t) + d2x2(t),

(1.9)
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where bi,aij, ei,di(i, j = 1, 2) are positive constants, xi(t) denotes the density of the population, ui(t)
denotes the feedback control variable. Their study showed that the feedback controls only change the
position of the unique positive equilibrium if the Lotka-Volterra competitive system is globally stable.
However, for the extinct case, by choosing suitable control variables, extinct species can become globally
stable, or still keep the property of extinction. Their findings showed that for the extinction case, feedback
control variables may change the stability property of the system.

Since dynamic behaviors of system (1.4) is very different to that of the system (1.8), it’s natural to ask:
is it possible to avoid the extinction of the species in system (1.4) by choosing some suitable feedback
control variable, if possible, whether the system could exhibit some similar dynamic behaviors as that of
system (1.9)? The aim of this paper is to give a thoroughly analysis of the dynamic behaviors of system
(1.1) and to answer the above problem. For more works on feedback control ecosystem, one could refer
to [1–44] and the references cited therein.

The paper is arranged as follows. We will investigated the local stability property of the equilibria of
system (1.1) in Section 2. In Section 3, By constructing some suitable Lyapunov function, we are able to
investigate the global stability property of the equilibria. Section 4 presents some numerical simulations
to show the feasibility of the main results. We end this paper by a briefly discussion.

2. Local stability of the equilibria of system (1.1)

The system (1.1) always admits the boundary equilibrium O1(0, 0, 0). If βα > δ2

(
β+ δ1

)
holds, then

the system (1.1) admits a unique positive equilibrium A1(x1∗, x2∗,u∗), where

x1∗ =
αx∗2
β+ δ1

, x2∗ =
e
(
αβ− δ2(β+ δ1)

)
(df+ eγ)(β+ δ1)

=

αβ

β+ δ1
− δ2

γ+ d fe
, u∗ =

f

e
x2∗. (2.1)

Obviously, x1∗, x2∗, and u∗ satisfy the equation
αx2∗ −βx1∗ − δ1x1∗ = 0,
βx1∗ − δ2x2∗ − γx

2
2∗ − dx2∗u∗ = 0,

−eu∗ + fx2∗ = 0.
(2.2)

We shall now investigate the local stability property of the above equilibria.
The variational matrix of the system (1.1) is

J(x1, x2,u) =

 −β− δ1 α 0
β −δ2 − 2γx2 − du −dx2
0 f −e

 . (2.3)

Theorem 2.1. Assume that

αβ < δ2

(
β+ δ1

)
(2.4)

holds, then O1(0, 0, 0) is locally asymptotically stable.

Proof. From (2.3) we could see that the Jacobian matrix of the system about the equilibrium pointO1(0, 0, 0)
is given by  −β− δ1 α 0

β −δ2 0
0 f −e

 . (2.5)

The characteristic equation of above matrix is

(λ+ e)
(
λ2 + (β+ δ1 + δ2)λ+βδ2 + δ1δ2 −αβ

)
= 0.

Hence, it has one negative characteristic root λ1 = −e < 0, the other two characteristic roots are deter-
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mined by the equation

λ2 + (β+ δ1 + δ2)λ+βδ2 + δ1δ2 −αβ = 0. (2.6)

Noting that under the assumption (2.4), the two characteristic roots of equation (2.6) satisfy

λ2 + λ3 = −(β+ δ1 + δ2) < 0, λ2λ3 = βδ2 + δ1δ2 −αβ > 0,

hence, λ2 < 0, λ3 < 0. Above analysis shows that the three characteristic roots of the matrix (2.5) are all
negative, hence, O1(0, 0, 0) is locally stable. This ends the proof of Theorem 2.1.

Theorem 2.2. Assume that

αβ > δ2

(
β+ δ1

)
(2.7)

holds, then A1(x1∗, x2∗,u∗) is locally asymptotically stable.

Proof. From (2.3) we could see that the Jacobian matrix of the system about the equilibrium point
A1(x1∗, x2∗,u∗) is given by  −β− δ1 α 0

β −δ2 − 2γx2∗ − du∗ −dx2∗
0 f −e

 . (2.8)

The characteristic equation of system (1.1) at A1(x1∗, x2∗,u∗) is

λ3 +B1λ
2 +B2λ+B3 = 0,

where

B1 = du∗ + 2γx2∗ +β+ δ1 + δ2 + e,
B2 = (β+ δ1) (du∗ + 2γx2∗ + δ2) −αβ+ dx2∗ f+ (du∗ + 2γx2∗ +β+ δ1 + δ2) e,
B3 = (β+ δ1) (du∗ + 2γx2∗ + δ2) e−αβe+ fdx2∗ (β+ δ1) .

From (2.1) and (2.2), we have

du∗ + 2γx2∗ + δ2 = β
x1∗
x2∗

+ γx2∗ =
αβ

β+ δ1
+ γx2∗.

Therefore,

B1 = du∗ + 2γx2∗ +β+ δ1 + δ2 + e > 0,

B2 = (β+ δ1)
( αβ

β+ δ1
+ γx2∗

)
−αβ+ dx2∗ f+ (du∗ + 2γx2∗ +β+ δ1 + δ2) e

> dx2∗ f+ (du∗ + 2γx2∗ +β+ δ1 + δ2) e > 0,
B3 = (β+ δ1) (du∗ + 2γx2∗ + δ2) e−αβe+ fdx2∗ (β+ δ1)

= (β+ δ1)
( αβ

β+ δ1
+ γx2∗

)
e−αβe+ fdx2∗ (β+ δ1) > fdx2∗ (β+ δ1) > 0.

Set K = du∗ + 2γx2∗ + δ2, then

B1B2 −B3 =
(
K+ δ1 +β+ e

)[
(β+ δ1)K+ (K+β+ δ1)e

−αβ+ fdx2∗
]
− (β+ δ1)Ke+αβe− fdx2∗(β+ δ1)

>
(
K+ δ1 +β+ e

)[
(β+ δ1)

αβ

β+ δ1
+ (K+β+ δ1)e
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−αβ+ fdx2∗
]
− (β+ δ1)Ke+αβe− fdx2∗(β+ δ1)

>
(
K+ δ1 +β+ e

)[
(K+β+ δ1)e+ fdx2∗

]
− (β+ δ1)Ke+αβe− fdx2∗(β+ δ1)

>
(
K+ δ1 +β+ e

)
(K+β+ δ1)e− (β+ δ1)Ke+αβe

> αβe > 0.

By Hurwitz criterion, the three characteristic roots of the matrix (2.8) are all negative, hence, A1(x1∗, x2∗,u∗)
is locally asymptotically stable. This ends the proof of Theorem 2.2.

3. Global attractivity

This section try to obtain some sufficient conditions which could ensure the global asymptotical sta-
bility of the equilibria of system (1.1).

Theorem 3.1. Assume that

αβ < δ2

(
β+ δ1

)
(3.1)

holds, then O1(0, 0, 0) is globally asymptotically stable.

Proof. Condition (3.1) is equal to

αβ

β+ δ1
− δ2 +

1
2f

(
δ2 −

αβ

β+ δ1

)
f < 0. (3.2)

We will prove Theorem 3.1 by constructing some suitable Lyapunov function. Let’s define a Lyapunov
function

V1(x1, x2,u) =
β

β+ δ1
x1 + x2 + k3u,

where

k3 =
1
2f

(
δ2 −

αβ

β+ δ1

)
.

One could easily see that the function V1 is zero at the equilibrium O(0, 0, 0) and is positive for all other
positive values of x1, x2, and u. The time derivative of V1 along the trajectories of (1.1) is

D+V1(t) =
β

β+ δ1

(
αx2 −βx1 − δx1

)
+βx1 − δ2x2 − γx

2
2 − dux2 − k3eu+ k3fx2

=
( αβ

β+ δ1
− δ2 + k3f

)
x2 − γx

2
2 − dux2 − k3eu.

It then follows from (3.2) that D+V1(t) < 0 strictly for all x1, x2,u > 0 except the boundary equilibrium
O1(0, 0, 0), where D+V1(t) = 0. Thus, V1(x1, x2,u) satisfies Lyapunov’s asymptotic stability theorem, and
the boundary equilibrium O1(0, 0, 0) of system (1.1) is globally asymptotically stable. This completes the
proof of Theorem 3.1.

Theorem 3.2. Assume that

αβ > δ2

(
β+ δ1

)
holds, then A1(x1∗, x2∗,u∗) is globally asymptotically stable.

Proof. We will prove Theorem 3.2 by constructing some suitable Lyapunov function. Let’s define a Lya-
punov function

V2(x1, x2,u) = k1

(
x1 − x1∗ − x1∗ ln

x1

x1∗

)
+ k2

(
x2 − x2∗ − x2∗ ln

x2

x2∗

)
+ k3(u− u∗)

2,

where k1,k2,k3 are some positive constants determined later. One could easily see that the function V2
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is zero at the equilibrium A1(x1∗, x2∗,u∗) and is positive for all other positive values of x1, x2 and u. The
time derivative of V2 along the trajectories of (1.1) is

D+V2(t) = k1
x1 − x1∗
x1

ẋ1 + k2
x2 − x2∗
x2

ẋ2

= k1
x1 − x1∗
x1

(
αx2 − (β+ δ1)x1

)
+ k2

x2 − x2∗
x2

(
βx1 − δ2x2 − γx

2
2 − dux2

)
+ 2k3(u− u∗)(−eu+ fx2).

(3.3)

Noting that from the relationship of x1∗, x2∗ and u∗ (see (2.2)), we have

αx2 − (β+ δ1)x1 =
α

x1∗

(
x2x1∗ − x1x2∗

)
+αx1

x2∗
x1∗

−
(
β+ δ1

)
x1

=
α

x1∗

(
− x2(x1 − x1∗) + x1(x2 − x2∗)

)
,

(3.4)

also, from (2.1) and (2.3), we have

βx1 − δ2x2 − γx
2
2 − dux2 =

β

x2∗

(
x1x2∗ − x2x1∗

)
+βx2

x1∗
x2∗

− δ2x2 − γx
2
2 − dux2

=
β

x2∗

(
x1x2∗ − x1x2 + x1x2 − x2x1∗

)
+
( αβ

β+ δ1
− δ2

)
x2 − γx

2
2 − dux2

=
β

x2∗

(
x1x2∗ − x1x2 + x1x2 − x2x1∗

)
+
(
γ+ d

f

e

)
x2∗x2 − γx

2
2 − dux2

=
β

x2∗

(
x1(x2∗ − x2) + x2(x1 − x1∗)

)
+ γx2

(
x2∗ − x2

)
+ dx2

(
u∗ − u

)
,

(3.5)

from the third equation of (2.2), we have

−eu+ fx2 = −eu+ fx2 + eu∗ − fx2∗ = −e(u− u∗) + f(x2 − x2∗). (3.6)

Applying (3.4)-(3.6) to (3.3) leads to

D+V2(t) = k1
x1 − x1∗
x1

α

x1∗

(
− x2(x1 − x1∗) + x1(x2 − x2∗)

)
+ k2

x2 − x2∗
x2

β

x2∗

(
x1(x2∗ − x2) + x2(x1 − x1∗)

)
+ k2γx2

x2 − x2∗
x2

(
x2∗ − x2

)
+ k2dx2

x2 − x2∗
x2

(
u∗ − u

)
+ 2k3(u− u∗)

(
− e(u− u∗) + f(x2 − x2∗)

)
= −

k1αx2

x1x1∗
(x1 − x1∗)

2 +
(k1α

x1∗
+
k2β

x2∗

)
(x1 − x1∗)(x2 − x2∗)

−
k2βx1

x2x2∗
(x2 − x2∗)

2 − k2γ
(
x2 − x2∗

)2
+ k2d(x2 − x2∗)(u∗ − u)

− 2k3e(u− u∗)
2 + 2k3f(u− u∗)(x2 − x2∗).

Now let’s choose k2 = 1,k1 =
βx1∗
x2∗α

,k3 =
d

2f
, then

D+V2(t) = −
βx2

x1x2∗
(x1 − x1∗)

2 +
2β
x2∗

(x1 − x1∗)(x2 − x2∗)

−
βx1

x2x2∗
(x2 − x2∗)

2 − γ
(
x2 − x2∗

)2
−
de

f
(u− u∗)

2

= −
β

x2∗

[√x2

x1
(x1 − x1∗) −

√
x1

x2
(x2 − x2∗)

]2
− γ
(
x2 − x2∗

)2
−
de

f
(u− u∗)

2.
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Hence, D+V2(t) < 0 strictly for all x1, x2,u > 0 except the positive equilibrium A(x1∗, x2∗,u∗), where
D+V2(t) = 0. Thus, V2(x1, x2,u) satisfies Lyapunov’s asymptotic stability theorem, and the positive
equilibrium A1(x1∗, x2∗,u∗) of system (1.1) is globally asymptotically stable. This completes the proof of
Theorem 3.2.

Remark 3.3. Compared with Theorems 3.1 and 3.2, we showed that if the system is globally stable, then
the feedback control variable only change the position of the unique positive equilibrium and retain the
stable property. If the system is extinct, then we show that the system with feedback control is also extinct.

Remark 3.4. For the case the system admits a unique positive equilibrium, from Theorems 3.2 and 2.2
and the expression of x1∗, x2∗ (see (2.1)), one could easily see that x2∗ < x∗2 , x1∗ < x∗1 , where (x∗1 , x∗2) is
the unique positive equilibrium of the system (1.4). Hence, the feedback control variable alter the system
structurally so as to make the population stabilize at value lower than the original system.

Remark 3.5. Condition βα > δ2(β+ δ1) is sufficient and necessary to ensure the systems (1.1) and (1.4)
admit a unique positive equilibrium, hence, we could draw the conclusion: if the system (1.4) admits the
unique positive equilibrium, the feedback control variables will have no influence on the stability of the
system.

4. Numeric simulations

Now let’s consider the following examples.

Example 4.1. Let’s consider the single species stage structure system with feedback control:

dx1

dt
= 3x2 − x1 − x1,

dx2

dt
= x1 − x2 − x

2
2 − x2u,

du

dt
= −u+ x, (4.1)

here we choose β = δ1 = δ2 = γ = e = f = 1,α = 3. Hence

αβ = 3 > 2 = δ2(β+ δ1).

It follows from Theorem 3.2 that the unique positive equilibrium A1(
3
8 , 1

4 , 1
4) is globally asymptotically

stable. Numeric simulations (Figs. 1, 2, 3) also support this assertion.

Figure 1: Dynamics behaviors of the first compo-
nent x1(t) of system (4.1), here we take α = 3
and the initial conditions (x1(0), x2(0),u(0))=
(0.5, 0.1, 0.2),(0.1, 0.1, 0.1), (1, 1, 1) and (0.4, 0.4, 0.4),
respectively.

Figure 2: Dynamics behaviors of the second com-
ponent x2(t) of the system (4.1). Here, we take
α = 3 and the initial conditions (x1(0), x2(0),u(0)) =
(0.5, 0.1, 0.2), (0.1, 0.1, 0.1), (1, 1, 1) and (0.4, 0.4, 0.4), re-
spectively.
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Figure 3: Dynamics behaviors of the third compo-
nent u(t) of the system (4.1), here we take α =
3 and the initial conditions (x1(0), x2(0),u(0)) =
(0.5, 0.1, 0.2), (0.1, 0.1, 0.1), (1, 1, 1) and (0.4, 0.4, 0.4), re-
spectively.

Figure 4: Dynamics behaviors of the first compo-
nent x1(t) of the system (4.2), here we take α =
1 and the initial conditions (x1(0), x2(0),u(0)) =
(0.5, 0.1, 0.2), (0.1, 0.1, 0.1), (1, 1, 1) and (0.4, 0.4, 0.4), re-
spectively.

Example 4.2. Let’s consider the single species stage structure system with feedback control:

dx1

dt
= x2 − x1 − x1,

dx2

dt
= x1 − x2 − x

2
2 − x2u,

du

dt
= −u+ x, (4.2)

here we choose β = δ1 = δ2 = γ = e = f = α = 1. Hence

αβ = 1 < 2 = δ2(β+ δ1).

It follows from Theorem 3.1 that the boundary equilibrium O1(0, 0, 0) is globally asymptotically stable.
Numeric simulations (Figs. 4, 5, 6) also support this assertion.

Figure 5: Dynamics behaviors of the second compo-
nent x2(t) of the system (4.2), here we take α =
1 and the initial conditions (x1(0), x2(0),u(0)) =
(0.5, 0.1, 0.2), (0.1, 0.1, 0.1), (1, 1, 1) and (0.4, 0.4, 0.4), re-
spectively.

Figure 6: Dynamics behaviors of the third compo-
nent u(t) of the system (4.2), here we take α =
1 and the initial conditions (x1(0), x2(0),u(0)) =
(0.5, 0.1, 0.2), (0.1, 0.1, 0.1), (1, 1, 1) and (0.4, 0.4, 0.4), re-
spectively.
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5. Conclusion

Since the pioneering work of Gopalsamy and Weng [18], the study of the dynamic behaviors of ecosys-
tem with feedback control system becomes one of the main topics of mathematics biology (see [18–32]
and the references cited therein). Among those works, two papers seems very interesting, the first one
is Ding and Cheng [14], they proposed the single species stage structured system with feedback control
(system (1.6)), though they showed the system admits unique positive equilibrium, they needed some ad-
ditional condition (inequality (1.7)) to ensure the global asymptotically stable of the positive equilibrium.
The second interesting paper is wrote by Li et al. [27], they proposed a competitive system with feedback
controls, they found that for the extinct case, by choosing suitable control variables, extinct species can
become globally stable, or still keep the property of extinction, which means that the feedback control
mechanism is one of the essential method to avoid the extinction of the species. On the other hand, re-
cently, Khajanchi and Banerjee [23] proposed a stage structured predator prey system (system (1.3)), and
their success stimulated us to propose the system (1.1).

It seems that our results are also very interesting. We showed that if the system (1.4) admits a unique
positive equilibrium, then feedback control variable could only alter the positive equilibrium to a lower
case and could not change the stability property of the positive equilibrium, and for the extinct case,
dislike the results of Li et al. [27], we show that the system still driven to extinction, and feedback
mechanism could not avoid the extinct of the species.

Condition (2.7) could also be rewrite as α > δ2

(
1 +

δ1

β

)
, from this, we could find that the birth rate of

the immature species and death rate of the mature species play most important role on the persistent and
stability of the system. Promoting the birth rate of the immature species and reducing the death rate of
the mature species will increasing the stability of the system.
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