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Abstract
In this paper, we study the self-similar surfaces in 4-dimensional Euclidean space E4. We give an if and only if condition

for a generalized rotational surfaces in E4 to be self-similar. In addition we examine self-similarity of some special surfaces in
E4. Furthermore we investigate the self-similar condition of Tensor Product surfaces and Meridian surfaces in E4.
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1. Introduction

The theory of curves and surfaces in Euclidean space is very important notion in differential geometry.
There are many applications of curve and surfaces, such as computer engineering, physics and linear
equations. Especially, curvature properties are used for obtaining textural features in pattern recognition
and image segmentation [14, 15]. On the other hand, some special surfaces in E4 such as generalized
rotating surfaces [10], Lawson surfaces [16], Aminow surfaces [1], Vranceanu surfaces [20], flat Klein
bottle [19], Banchoff surfaces [6], Loop surfaces [12], tensor product surfaces [17], meridian surfaces [11]
are important the differential geometry of surfaces.

Gradient flow of area functional on submanifolds n-dimensional of a Riemannian manifold is called
the Mean Curvature Flow (MCF). To take more information more about the behavior of the MCF, self-
shrinkers have been studied. Many authors study on self-shrinking surfaces to elaborate the regularity of
the MCF. This studies become important to work the self-similar curves and surfaces. In literature there
are several works on self-similar curves and surfaces [2–4, 9].

In this paper, firstly we present some fundamental facts on self-similar surfaces then we prove nec-
essary and sufficient conditions for generalized rotating surfaces, meridian surfaces and tensor product
surfaces in E4 to be self-similar. In addition, we examine some important special surfaces such as Law-
son surface, Aminow surface, Vranceanu surfaces, flat Klein bottle surfaces, Banchoff surfaces and Loop
surfaces are self-similar surfaces or not.

∗Corresponding author
Email addresses: maltin@bingol.edu.tr (Mustafa Altın), muge.karadag@inonu.edu.tr (Müge Karadağ),
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2. Preliminaries

In this section we give a short survey for surface theory.
Let S ⊂ E4, U ⊂ S be a neighborhood of a point in S and V ⊂ E2. If X : V −→ E4 has the following

conditions then it is called smooth 2-surface in E4:

i) X : V −→ U is a homeomorphism;
ii) X(u, v) = (x(u, v), y(u, v), z(u, v)) has derivatives of all orders;

iii) at all points, the first derivatives xu = ∂x
∂u and xv = ∂x

∂v are linearly independent [13].

Now we recall some fundamental equations for surfaces in n- dimensional Euclidean space.
Let M be a surface which is given by X(u, v). The coefficients of the first fundamental form of a X(u, v)

are given by
E = 〈Xu,Xu〉 , F = 〈Xv,Xu〉 ,G = 〈Xv,Xv〉 ,

where 〈 , 〉 is standard inner product in E4. If W = EG− F2 6= 0, then surface X(u, v) is regular.
Let TPM and T⊥PM be tangent space and normal space of M in En at the point P, and ∇̃ and ∇ be

Riemannian and normal connections in the tangent bundle χ(M) and normal bundle χ⊥(M), respectively.
Since T⊥PM is orthogonal component of TpM in En, for X1,X2 tangent vector fields of M we have

∇X1X2 = (∇̃X1X2)
T .

The second fundamental form of X(u, v) is given by

h : χ(M)× χ(M)→ χ⊥(M), h(Xi,Xj) = ∇̃XiXj −∇XiXj , (1 6 i, j 6 2). (2.1)

where

∇XiXj =
2∑
k=1

ΓkijXk , (1 6 i, j 6 2), h(Xi,Xj) =
n−2∑
k=1

ckijNk , (1 6 i, j 6 2),

ckij and Γkij are the coefficients of the second fundamental form and Christoffel symbols, respectively [13].
The equation (2.1) is said to be Gaussian equation.

Let {N1,N2, . . . ,Nn−2} be orthogonal frame field of T⊥PM, then shape operator on M is defined by

A : χ⊥(M)× χ(M)→ χ(M), ANiX = −(∇̃XiNi)
T , (Xi ∈ χ(M)).

This operator is well defined, self adjoint and bilinear. It is well-known that〈
ANkXj,Xi

〉
=
〈
h(Xi,Xj),Nk

〉
= ckij, (1 6 i, j 6 2, 1 6 k 6 n− 2).

Furthermore, the mean curvature vector of surfaces M with the parametric X(u, v) is given by ([8])

−→
H =

1
2W2

n−2∑
k=1

(ck11G+ ck22E− 2ck12F)Nk.

Definition 2.1. A surface in En is self-similar if

−→
H + λX⊥ = 0,

where
−→
H is the mean curvature and X⊥ stands for the projection of the position vector X onto the normal

space, respectively [2, 4].
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From the definition, a surface in En is self-similar if ([9])

〈H,Ni〉+ λ 〈X,Ni〉 = 0, i = 1, 2, (2.2)

Thus from equation (2.2), we get

〈Xuu,Ni〉G+ 〈Xvv,Ni〉E− 2 〈Xuv,Ni〉 F = −2λ(EG− F2) 〈X,Ni〉

and

c1
11G+ c1

22E− 2c1
12F = −2λ(EG− F2) 〈X,N1〉 , c2

11G+ c2
22E− 2c2

12F = −2λ(EG− F2) 〈X,N2〉 . (2.3)

If a regular surface X(u, v) in E4 satisfy above equalities, then X(u, v) is self-similar surface.

Definition 2.2. Let γ : I ⊂ R −→ E4 be a 4-ranked curve. A surface given with regular patch X :
U ⊂ E2 −→ E4, X (u, v) = γ (u) +A (v)V2 (u) + B (v)V4 (u) , v ∈ J ⊂ R, 0 6 u 6 2π is called generalized
rotation surface if the following conditions satisfy:

A′ (v)2 +B′ (v)2 > 0, (k1A (v) − 1)2 + (k2A (v) − k3B (v))2 > 0, v ∈ R,

where A(v),B(v) are differentiable functions [18]. A generalized rotation surface is defined as 1-parameter
family of planar curve, lying in the normal plane spanned by {V2(u),V4(u)} vectors of the curve γ.

The parametric equation of the generalized rotation surfaces is given by

X (u, v) = (f (v) cos cu, f (v) sin cu,g (v) cosdu,g (v) sindu) (2.4)

where

f (v) =

(
a+

1
k1

(
−ac2 A (v) + bd2B (v)

))
, g (v) =

(
b+

1
k1

(
−bd2A (v) − ac2B (v)

))
,

a,b, c,d ∈ R [10].
For special values of a,b, c,d, we have special surfaces which are defined as follows.

Definition 2.3.

1. If we take f (v) = cos v, g (v) = sin v, c ∈ R+, and d = 1, then the generalized rotation surfaces is
called Lawson surface [16].

2. If we take f (v) = a cos v, g (v) = b sin v, a,b ∈ R, and c = d = 1, then the generalized rotation
surface is called Aminov rotation surface [1].

3. If we take f (v) = r (v) cos v, g (v) = r (v) sin v, and c = d = 1, then the generalized rotation surface
is called Vranceanu surface [20].

4. If we take f (v) = cos v, g (v) = 2 sin v, c = 1, and d = 1
2 , then the generalized rotation surface is

called flat Klein bottle [19].
5. If we take f (v) = cos2 v, g (v) = sin 2v, c = 2, and d = 1, then the generalized rotation surface is

called Banchoff surface [6].
6. If we take f (v) = v, g (v) = 1, c = 1, and d ∈ R+, then the generalized rotation surface is called

Loop surface [12].

3. Self-similar generalized rotation surfaces in 4-dimensional Euclidean space

In this section, we give necessary and sufficient conditions for a generalized rotation surface to be
self-similar. Besides, we compute the conditions that Lawson surfaces, Aminow surfaces and Vranceanu
surfaces to be self-similar under these conditions. Finally, we obtain that flat Klein Bottle, Banchoff and
Loop surfaces are not self-similar.
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Theorem 3.1. A generalized rotation surface given by (2.4) is self-similar surface if and only if

c2f (v)g′ (v) − d2f′ (v)g (v)

(cf (v))2 + (dg (v))2 +
f′ (v)g′′ (v) − f′′ (v)g′ (v)

(f′ (v))2 + (g′ (v))2 + 2λ
(
f′ (v)g (v) − f (v)g′ (v)

)
= 0. (3.1)

Proof. Let M be a generalized rotation surface. Then we get first and second partial derivatives of the
surface X(u, v) in (2.4):

∂X

∂u
= Xu (u, v) = (−cf (v) sin cu, cf (v) cos cu,−dg (v) sindu,dg (v) cosdu) ,

∂X

∂v
= Xv (u, v) =

(
f′ (v) cos cu, f′ (v) sin cu,g′ (v) cosdu,g′ (v) sindu

)
,

Xuu (u, v) =
(
−c2f (v) cos cu,−c2f (v) sin cu,−d2g (v) cosdu,−d2g (v) sindu

)
,

Xuv (u, v) =
(
−cf′ (v) sin cu, cf′ (v) cos cu,−dg′ (v) sindu,dg′ (v) cosdu

)
,

Xvv (u, v) =
(
f′′ (v) cos cu, f′′ (v) sin cu,g′′ (v) cosdu,g′′ (v) sindu

)
.

Also the normal vector to M is obtained as

N1 =
1√

(f′ (v))2 + (g′ (v))2

(
−g′ (v) cos cu,−g′ (v) sin cu, f′ (v) cosdu, f′ (v) sindu

)
,

N2 =
1√

(cf (v))2 (dg (v))2
(−dg (v) sin cu,dg (v) cos cu, cf (v) sindu,−cf (v) cosdu) .

(3.2)

Let we recall the coefficients of first and second fundamental form of a generalized rotation surface X(u, v)
[5]:

E = 〈Xu,Xu〉 = (cf (v))2 + (dg (v))2 ,
F = 〈Xu,Xv〉 = 0,

G = 〈XvXv〉 =
(
f′ (v)

)2
+
(
g′ (v)

)2 ,

c1
11 = 〈Xuu,N1〉 = c2f (v)g′ (v) − d2f′ (v)g (v)√

(f′ (v))2 + (g′ (v))2
,

c1
12 = 〈Xuv,N1〉 = 0,

c1
22 = 〈Xvv,N1〉 =

f′ (v)g′′ (v) − f′′ (v)g′ (v)√
(f′ (v))2 + (g′ (v))2

,

c2
11 = 〈Xuu,N2〉 = 0,

c2
12 = 〈Xuv,N2〉 =

cd (f′ (v)g (v) − f (v)g′ (v))√
(cf (v))2 + (dg (v))2

,

c2
22 = 〈Xvv,N2〉 = 0.

(3.3)

Therefore by using (2.3), (3.2), and (3.3), (3.1) is obtained.

So, from Theorem 3.1, we have following corollaries.

Corollary 3.2. For λ = 1, the Lawson surface in E4 is a self-similar surface.

Proof. Substituting equations f (v) = cos v, g (v) = sin v, c ∈ R+, and d = 1 in equation (3.1) we have

c2 cos v. (sin v)′ − (cos v)′ . sin v
c2 cos2 v+ sin2 v

+
(cos v)′ (sin v)′′ − (cos v)′′ (sin v)′(

(cos v)′
)2

+
(
(sin v)′

)2 = 2λ.

By λ = 1 the above equation give self-similarity.
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Corollary 3.3. For λ = 1
a2 = 1

b2 , the Aminov rotation surface in E4 is a self-similar surface.

Proof. Substituting equations f (v) = a cos v, g (v) = b sin v, a,b ∈ R, and c = d = 1 in equation (3.1), we
have

a cos v.b cos v+ a sin v.b sin v
a2 cos2 v+ b2 sin2 v

+
a cos v.b cos v+ a sin v.b sin v

b2 cos2 v+ a2 sin2 v
+ 2λ

(
−ab sin2 v− ab cos2 v

)
= 0

or equal to

2λ =
1

a2 cos2 v+ b2 sin2 v
+

1
b2 cos2 v+ a2 sin2 v

.

If we take λ = 1
a2 = 1

b2 , the proof is complete.

Corollary 3.4. For (
1

r2 (v)
+

2 (r′ (v))2 − r (v) r′′ (v) + r2 (v)

((r′ (v))2 + (r (v))2)r2 (v)

)′
= 0

the Vranceanu surface in E4 is a self-similar surface.

Proof. Substituting equations f (v) = r (v) cos v, g (v) = r (v) sin v and c = d = 1 in equation (3.1), we have

1
r2 (v)

(
1 +

2 (r′ (v))2 − r (v) r′′ (v) + r2 (v)

((r′ (v))2 + (r (v))2)

)
= 2λ.

If we take the derivative of this equality, it is concluded that λ is fixed. This is the desired result.

Corollary 3.5. Flat Klein bottle in E4 is not a self-similar surface.

Proof. Substituting equations f (v) = cos v, g (v) = 2 sin v, c = 1 and d = 1
2 in equation (3.1), we have(

9 cos4 v+ 3
6 cos2 v+ 2

+ 1
)

= 4λ.

Since the λ is dependent on v, flat Klein bottle in E4 is not a self-similar surface.

Corollary 3.6. Banchoff surface in E4 is not a self-similar surface.

Proof. Substituting equations f (v) = cos2 v, g (v) = sin 2v, c = 2, and d = 1 in equation (3.1), we have(
8 cos2 v cos 2v+ sin2 2v

4 cos4 v+ sin2 2v
+

4 sin2 2v+ 4 cos2 2v
1 + 3 cos2 2v

+ 2λ(sin2 2v− 2 cos2 v cos 2v)
)

= 0.

Since the λ is dependent on v, Banchoff surface in E4 is not a self-similar surface.

Corollary 3.7. Loop surface in E4 is not a self-similar surface.

Proof. Substituting equations f (v) = v, g (v) = 1, c = 1, and d ∈ R+ in equation (3.1), we have(
−d2

d2 + v2 + 2λ
)

= 0.

Since the λ is dependent on v and d, the Loop surface in E4 is not a self-similar surface.

4. Self-similar tensor product and meridian surfaces in 4-dimensional euclidean space

In this section, we examine the self-similarity of tensor product surfaces and meridian surfaces. We
give necessary and sufficient conditions for to be self-similar surface of these surfaces. So, we can give
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the following definition.

Definition 4.1. Let c1 : R→ E2, c2 : R→ E2 be planar curves and

c1(u) = (γ(u), δ(u)), c2(v) = (α(v),β(v)).

Then
X(u, v) = (α(v)γ(u),β(v)γ(u),α(v)δ(u),β(v)δ(u))

is called tensor product surfaces. Here the tensor product of the c1(u) and c2(v) curves means that
X = c1(u)⊗ c2(v) [17].

If we take c1(u) = (cosu, sinu), c2(v) = (α(v),β(v)), then the tensor product surface becomes as

M : X(u, v) = (α(v) cosu,β(v) cosu,α(v) sinu,β(v) sinu). (4.1)

So, we have

Proposition 4.2. Tensor product surface (4.1) in E4 is self-similar surface if and only if

α(v)β′(v) −α′(v)β(v)

(α(v))2 + (β(v))2 +
α′(v)β′′(v) −α′′(v)β′(v)

(α′(v))2 + (β′(v))2 + 2λ(α′(v)β(v) −α(v)β′(v)) = 0.

Proof. The first and second partial derivatives and normal vectors of the surface X(u, v) in (4.1) are given
as

∂X

∂u
= Xu (u, v) = (−α(v) sinu,−β(v) sinu,α(v) cosu,β(v) cosu),

∂X

∂v
= Xv (u, v) = (α′(v) cosu,β′(v) cosu,α′(v) sinu,β′(v) sinu),

Xuu (u, v) = (−α(v) cosu,−β(v) cosu,−α(v) sinu,−β(v) sinu),
Xvu (u, v) = (−α′(v) sinu,−β′(v) sinu,α′(v) cosu,β′(v) cosu),
Xvv (u, v) = (α′′(v) cosu,β′′(v) cosu,α′′(v) sinu,β′′(v) sinu),

N1 =
1∥∥c′2∥∥(−β′(v) cosu,α′(v) cosu,−β′(v) sinu,α′(v) sinu),

N2 =
1
‖c2‖

(−β(v) sinu,α(v) sinu,β(v) cosu,−α(v) cosu).

(4.2)

From [7] coefficients of first and second fundamental form of surface X(u, v) in (4.1) are given as follows

E = 〈Xu,Xu〉 = (α(v))2 + (β(v))2,
F = 〈Xu,Xv〉 = 0,

G = 〈Xv,Xv〉 = (α′(v))2 + (β′(v))2,

c1
11 = 〈Xuu,N1〉 = α(v)β′(v) −α′(v)β(v)∥∥c′2∥∥ ,

c1
12 = 〈Xuv,N1〉 = 0,

c1
22 = 〈Xvv,N1〉 =

α′(v)β′′(v) −α′′(v)β′(v)∥∥c′2∥∥ ,

c2
11 = 〈Xuu,N2〉 = 0,

c2
12 = 〈Xuv,N2〉 =

α′(v)β(v) −α(v)β′(v)

‖c2‖
,

c2
22 = 〈Xvv,N2〉 = 0.

(4.3)

If the equalities (4.2) and (4.3) are used in equation (2.3), then the desired result is obtained.

Finally, we examine necessary and sufficient condition to be self-similar surface of meridian surfaces.
So, we can give the following definition.
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Definition 4.3. Let {e1,e2,e3,e4} be standard orthogonal frame in E4, α : α(u) = (α1(u),α2(u)) and γ :
γ(v) = (γ1(v),γ2(v),γ3(v)) be unit speed curves. Frame of curve γ(v) is {T(v),N(v),γ(v)} , while T = γ′,
provides following equations

γ′(v) = T(v), T ′(v) = κ(v)N(v) − γ(v), N′(v) = −κ(v)T(v),

where curvature of curve γ(v) is κ(v) and curvature of α(u) is κα(u).

It is known that [11], meridian surface is parameterized by

M : X(u, v) = α1(u)γ(v) +α2(u)e4. (4.4)

So, we have the following proposition.

Proposition 4.4. Meridian surface (4.4) in E4 is self-similar surface if and only if

α1(u)κ(v) = 0

and
κα(u)α1(u) +α

′
2(u) + 2λα1(u)(α

′
1(u)α2(u) −α1(u)α

′
2(u)).

Proof. The first and second partial derivatives and normal vectors of the surface X(u, v) are given as

Xu (u, v) = α′1(u)γ(v) +α
′
2(u)e4,

Xv (u, v) = α1(u)T(v),
Xuu (u, v) = α′′1 (u)γ(v) +α

′′
2 (u)e4,

Xvu (u, v) = α′1(u)T(v),
Xvv (u, v) = α1(u)κ(v)N(v) −α1(u)γ(v),

N1 = N(v),
N2 = −α′2(u)γ(v) +α

′
1(u)e4.

(4.5)

Also, coefficients of first and second fundamental form of surface X(u, v) are given as follows [7]

E = 〈Xu,Xu〉 = 1,
F = 〈Xu,Xv〉 = 0,

G = 〈Xv,Xv〉 = (α1(u))
2,

c1
11 = 〈Xuu,N1〉 = 0,

c1
12 = 〈Xuv,N1〉 = 0,

c1
22 = 〈Xvv,N1〉 = α1(u)κ(v),

c2
11 = 〈Xuu,N2〉 = 0,

c2
11 = 〈Xuu,N2〉 = κα(u),
c2

12 = 〈Xuu,N2〉 = 0,

c2
22 = 〈Xvv,N2〉 = α1(u)α

′
2(u).

(4.6)

If the equalities (4.5) and (4.6) are used in equation (2.3), then the desired result is obtained.
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