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Abstract
Numerical solution of the third order fractional differential equation is obtained by using DGJ (Daftardar-Gejii-

Jafaris) method. Providing DGJ method converges, it is shown that obtained approximate solution is effective which
is close to the exact solution or the exact solution. An example explained this method is presented. The proposed
method is implemented for the approximation solution of the third order nonlinear fractional partial differential
equations. An example which shows the method is unsuitable and inconsistent is given.
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1. Introduction

Fractional partial differential equations have gained considerable importance recently in the
literature. These equations have significant applications in finance, applied sciences, seismol-
ogy engineering, physics and biology [1, 18, 19, 21, 23, 32]. Fractional differential equations
can be solved separately depending on time and space variables. There are some methods for
approximate solutions of fractional differential equations depending space and time variables
[4–6, 25, 26, 33]. Some of these methods are radial basis functions, Chebyshew Tau method,
thin plate splines method, variational iteration method, finite difference schemes method, one-
dimensional sine-Gordon equation and DGJ method [2, 14, 22, 27, 29]. Also, one can find various
good numerical solutions of the fractional differential equations in [7–10, 15–17, 24, 28, 34–40]
etc.

Beside these facts, DGJ method is a good and effective mathod and has been attractive method
recently. In [11, 12, 30], this method was used for evolution and nonlinear functional equation
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and fractional order linear, nonlinear systems. In [31], the telegraph equation was solved by
DGJ method. Furthermore this method was applied to solve fractional heat-like and wave-like
models with variable coefficients in [3].

In the present paper, we shall investigate the initial-boundary value problems of third-order
fractional differential equations defined by Caputo derivative as follows:

∂3u(t,x)
∂t3

+
∂αu(t,x)
∂tα + u(t, x) = λ∂

2u(t,x)
∂x2 + f(t, x),

0 < x < L, 0 < t < T , 0 < α 6 1,

u(0, x) = g1(x), ut(0, x) = g2(x), utt(0, x) = g3(x), 0 6 t 6 T ,

u(t,XL) = r1(t),u(t,XR) = r2(t), XL < x < XR.

(1.1)

Here λ is known constant coefficient, g1, g2, g3, r1 and r2 are known functions and u is an
unknown function.

DGJ method has been employed successfully to solve a variety of problems and it is simple
and easy for applying in fractional differential equation (1.1). It is economical in terms of com-
puter power/memory and does not involve tedious calculations such as Adomian polynomials
[20].

Differently from the problem investigated in [3], we show that DGJ method could be applied
to a third-order and non-linear fractional partial differential equation. With the help of examples
given in this study, advantages and disadvantages of DGJ method are discussed.

Now, we give some basic definitions and properties of fractional calculus theory for DGJ
method.

Definition 1.1. The definition of gamma function is given the following form:

Γ(z) =

t∫
0

e−ttz−1dt, ∀z ∈ C.

Definition 1.2. The Caputo fractional derivative Dαt u(t, x) of order α with respect to time is
defined as:

∂αu(t, x)
∂tα

= Dαt u(t, x)

=
1

Γ(n−α)

t∫
0

1
(t− p)α−n+1

∂αu(p, x)
∂pα

dp,

(n− 1 < α < n) ,

(1.2)

and for α = n ∈ N defined as:

Dαt u(t, x) =
∂αu(t, x)
∂tα

=
∂nu(t, x)
∂tn

.

Definition 1.3. By using gamma function and the formula (1.2), the following formula can be
written

Dαt (t
β) =

Γ(β+ 1)
Γ(β−α+ 1)

tβ−α.
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2. DGJ iteration method

In this section, we shall present some basic facts dealing DGJ Iteration Method.
Using the method in [31], we can write the general form as:

u(x) = N(u(x)) + f(x), (2.1)

where N is an operator, f is a known function and x = (x1, x2, · · · , xn). A solution of u the
equation in (2.1) is given the following series form

u(x) =

∞∑
j=0

uj(x). (2.2)

Therefore, the operator N can be written as

N(

∞∑
j=0

uj(x)) = N(u0) +

∞∑
j=1

{(

j∑
i=0

ui) −N(

j−1∑
i=0

ui)}. (2.3)

Putting (2.2) and (2.3) in (2.1), we have

∞∑
j=0

uj = f+N(u0) +

∞∑
j=1

{N(

j∑
i=0

uj) −N(

j−1∑
i=0

uj)}.

From the above formulas, the recurrence relation can be obtained as
u0 = f,
u1 = N(u0),
un+1 = N(u0 + u1 + · · ·+ un) −N(u0 + u1 + · · ·+ un−1), n = 1, 2, ... .

Thus we see that

(u1 + · · ·+ un+1) = N(u0 + u1 + · · ·+ un), n = 1, 2, · · · ,

and ∞∑
j=0

uj = f+N(

∞∑
j=0

uj).

The p-term approximation solution of the formulas (2.1) and (2.2) is given by u = u0 + u1 +
· · ·+ up−1.

Now, we shall apply DGJ method to third order fractional differential equation. Hence, the
initial value of this operator is Lttt = ∂3

∂t3
. The inverse operator of Lttt becomes

L−1
ttt =

t∫
0

t∫
0

t∫
0

(.)dtdtdt.
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Applying the inverse operator to both sides of (1.1), the following integral equation is ob-
tained

u(t, x) = u(t, 0) +
∂u(t, 0)
∂t

+
∂2u(t, 0)
∂t2

+

t∫
0

t∫
0

t∫
0

f(t, x)dtdtdt

+

t∫
0

t∫
0

t∫
0

(λ
∂2u(t, x)
∂x2 −

∂αu(t, x)
∂tα

− u(t, x))dtdtdt.

(2.4)

Using the initial conditions of (1.1) and (2.4), we get

u0 = g1 + g2t+ g3
t2

2
+

t∫
0

t∫
0

t∫
0

f(t, x)dtdtdt,

u1 = N(u0) =

t∫
0

t∫
0

t∫
0

(λ
∂2u0(t, x)
∂x2 −

∂αu0(t, x)
∂tα

− u0(t, x))dtdtdt,

um+1 = N(u0 + u1 + · · ·+ um) −N(u0 + u1 + · · ·+ um−1), m = 1, 2, · · · .

(2.5)

For convergences of this method and convergeness conditions, we refer to [12].

3. Numerical implementation

In this section, the proposed method is implemented to solve some examples of variable form
of the third order fractional partial differential equation. In the first example, obtained solution
is equivalent to the exact solutions. In the Example 3.2, the method has been observed for some
values are moving away from the exact solution while for some values approaching the exact
solution.

Example 3.1. Investigate the following third order fractional partial differential equation for
initial boundary value problems

∂3u(t,x)
∂t3

+
∂

1
2u(t,x)

∂t
1
2

+ u(t, x) = ∂2u(t,x)
∂x2 + ex(6 + 6 t

5
2

Γ( 7
2 )
),

0 < x, 0 < t < 1, 0 < α 6 1,

u(0, x) = ut(0, x) = utt(0, x) = 0, 0 6 t.

(3.1)

Using the formula (2.5) and initial condition of the formula (3.1) for DGJ method, we obtain

u0 = g1 + g2t+ g3
t2

2
+

t∫
0

t∫
0

t∫
0

ex(6 + 6
s

5
2

Γ(7
2)
)dsdsds

= 6ex
t∫
0

t∫
0

(s+
s

7
2

Γ(9
2)
)dsds = 6ex

t∫
0

(
s2

2
+

s
9
2

Γ(11
2 )

)ds
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= 6ex(
t3

6
+

t
11
2

Γ(13
2 )

),

u1 = N(u0) =

t∫
0

t∫
0

t∫
0

(
∂2u0(s, x)
∂x2 −

∂αu0(s, x)
∂tα

− u0(t, x))dsdsds

= −6ex
t∫
0

t∫
0

t∫
0

(
s

5
2

Γ(7
2)

+
s5

Γ(6)
)dsdsds

= −6ex(
t

11
2

Γ(13
2 )

+
t8

Γ(9)
,

u2 = 6ex(
t8

Γ(9)
+

t
21
2

Γ(23
2 )

),

...

un = (−1)n6ex(
t3+5n

Γ(4 + 5n)
+

t
9
2+5n

Γ(11
2 + 5n)

),

...

When n→∞, the result converges to exact solution as follow

u(t, x) = lim
n→∞

n∑
j=0

uj

= 6ex lim
n→∞

n∑
j=0

(−1)nex(
t3+5n

Γ(4 + 5n)
+

t
9
2+5n

Γ(11
2 + 5n)

)

= 6ex(
t3

6
− lim
n→∞ t

9
2+5n

Γ(11
2 + 5n)

)

= ext3,
for all 0 6 t 6 1.

The solution u(t, x) = ext3 obtained by DGJ method is the exact solution for the problem (3.1).

Example 3.2. Investigate the following nonlinear third order fractional partial differential equa-
tion for initial boundary value problems

∂3u(t,x)
∂t3

+
∂

1
2u(t,x)

∂t
1
2

= 3∂
2u(t,x)
∂x2 u(t, x) + 6(x− x2)(t6 + t

5
2

Γ( 7
2 )
+ 1),

0 < x, 0 < t < 1, 0 < α 6 1,

u(0, x) = ut(0, x) = utt(0, x) = 0, 0 6 t 6 1,

u(t, 0) = u(t, 1) = 0, 0 6 x 6 1.

(3.2)
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Using the formula (2.5) and initial condition of the formula (3.1) for DGJ method, we have

u0 = g1 + g2t+ g3
t2

2

+

t∫
0

t∫
0

t∫
0

6(x− x2)(s6 +
s

5
2

Γ(7
2)

+ 1)dsdsds

= 6(x− x2)

t∫
0

t∫
0

(
s7

7
+
s

7
2

Γ(9
2)

+ s)dsds

= 6(x− x2)

t∫
0

(
s8

7.8
+

s
9
2

Γ(11
2 )

+
s2

2
)ds

= 6(x− x2)(
t9

7.8.9
+

t
11
2

Γ(13
2 )

+
t3

6
),

(3.3)

and
u1 = N(u0)

=

t∫
0

t∫
0

t∫
0

(3
∂2u0(t, x)
∂x2 u(t, x) −

∂αu0(t, x)
∂tα

)dsdsds

= −(x− x2)

t∫
0

t∫
0

t∫
0

(6
s

29
2

7Γ(13
2 )

+
s18

24.49
+
s12

7

+ 216
s11

(Γ(13
2 ))

2
+ (

6.Γ(7)
Γ(19/2)

+
72
Γ(13

2 )
)s

17
2

+
s

11
2

Γ(13
2 )

+
s3

6
+ 6t6)dsdsds.

(3.4)

From that, we get

u1 = −(x− x2)(
48

7.31.33.35.Γ(13
2 )
t

35
2 +

t21

19.20.21.24.49
+

t15

7.13.14.15

+
216

12.13.14.(Γ(13
2 ))

2
t14 + (

6.Γ(7)
Γ(25/2)

+
576

19.21.23.Γ(13
2 )

)t
23
2

+
t

17
2

Γ(19
2 )

+
t6

480
+
t9

84
).

(3.5)

Using (3.3) and (3.5) formulas for the numerical results by DGJ method, we obtain the following
error analysis Table 3 with

ε = max

∣∣∣∣∣uexact −

k∑
i=0

ui

∣∣∣∣∣ ,

for i = 0, 1. Here uexact(t, x) = (x− x2)t3 is exact solution for the nonlinear problem (3.2) that can
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obtained by using Laplace transform method and ui are the approximation solutions by using
DGJ method obtained the above procedure.

t ,x ui(k = 1) uexact ε(k = 1)
t=0.5,x=0.5 −4.142853× 103 0.0312500 4.142884× 103

t=0.25,x=0.25 0.186714 0.002929 0.189644
t=0.1,x=0.1 8.976138× 10−5 9.000000× 10−5 2.386131× 10−7

t=0.05,x=0.05 5.937559× 10−6 5.937500× 10−6 5.975908× 10−11

t=0.02,x=0.02 1.568001× 10−7 1.568000× 10−7 1.822421× 10−13

t=0.01,x=0.01 9.900002× 10−9 9.900000× 10−9 2.042696× 10−15

t=0.001,x=0.001 9.990000× 10−13 9.990000× 10−13 6.563302× 10−22

By helping the Matlab program, obtained numerical solution of this problem can be applied
for further steps. Intervals becomes smaller, it is seen that the approximate solution is very close
to each other with exact solution. On the other hand, obtained approximations results are far
from the exact solution for t = 0.5 and x = 0.5 since proposed method is not convergence which
is shown as below.

Following the methods in [12, 30], we obtain

‖N(u0(t, x)‖ =

∥∥∥∥∥∥−(x− x2)

t∫
0

t∫
0

t∫
0

(6
s

29
2

7Γ(13
2 )

+
s18

24.49
+
s12

7

+ 216
s11

(Γ(13
2 ))

2
+ (

6.Γ(7)
Γ(19/2)

+
72
Γ(13

2 )
)s

17
2

+
s

11
2

Γ(13
2 )

+
s3

6
+ 6t6)dsdsds

∥∥∥∥∥
=

∥∥∥∥∥(x− x2)
48

7.31.33.35.Γ(13
2 )
t

35
2 +

t21

19.20.21.24.49

+
t15

7.13.14.15
+

216
12.13.14.(Γ(13

2 ))
2
t14

+ (
6.Γ(7)
Γ(25/2)

+
576

19.21.23.Γ(13
2 )

)t
23
2

+
t

17
2

Γ(19
2 )

+
t6

480
+
t9

84
)

∥∥∥∥∥
= 0.0286 <

1
e

,

‖Nt(u0(t, x)‖ =

∥∥∥∥∥−(x− x2)(
24

7.31.33.Γ(13
2 )
t

33
2

+
t20

19.20.24.49
+

t14

7.13.14
+

216
12.13.(Γ(13

2 ))
2
t13
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+ (
6.Γ(7)
Γ(23/2)

+
288

19.21.Γ(13
2 )

)t
21
2

+
t

15
2

Γ(17
2 )

+
t5

80
+ 9

t8

84
)

∥∥∥∥∥
= 0.2410 <

1
e

,

...

Ntt = 2.386494384604877× 1010 >
1
e

.

The last formula shows that Example 3.2 is not convergence for n > 1 derivatives with respect
to t because of DGJ method is equivalent to Taylor series expansion around u0 and Taylor series
conditions are not satisfied as in reference [13].

The vast majority of articles so far have just written the advantages of numerical methods.
In this study, both advantages and disadvantages of the method were examined. We see that in
Example 3.2, the approximate solution is not convergence to the exact solution at x = t = 0.5
(see Table 3). Also, figures deal with approximate and exact solutions are presented.
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Figure 1: Figure of approximate solution

4. Conclusion

In this paper, the DGJ method is investigated for the third order linear and nonlinear frac-
tional differential equation with Caputo fractional definition. This method gives the exact solu-
tion that is obtained by Laplace transform method depended initial-boundary value problems
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Figure 2: Figure of exact solution

for the first example. The second example is a nonlinear third order fractional partial differential
equation which shows that this method gives close values to the exact solution at some intervals
while blows up at some intervals. Approximate solutions for numerical experiments are found
by this method. These results are compared with the exact solutions. MATLAB is used for
numerical calculations for the Example 3.2.
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[17] H. Bulut, G. Yel, H. M. Başkonuş, An application of improved Bernoulli sub-equation function method to
the nonlinear time-fractional burgers equation, Turkish J. Math. Comput. Sci., 5 (2016), 1–7. 1
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