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Abstract
This manuscript presents Hyers-Ulam stability and Hyers-Ulam-Rassias stability results of non-linear Volterra integro-delay
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1. Introduction

In 1940, in a talk before the mathematics club at the university of Wisconsin, Ulam [33, 34] presented
a famed question related to the stability of homomorphisms: “When an approximate homomorphism from a
group G1 to a metric group G2 can be approximated by an exact homomorphism?”.

This question was answered by Hyers [13] for the case when G1 and G2 are assumed to be Banach
spaces by using direct method. So this interesting stability, initiated by Ulam and Hyers, is called Hyers-
Ulam stability. In 1978, Rassias [25] extended Hyers-Ulam stability concept by introducing new function
variables and after that it famed for the Hyers-Ulam-Rassias stability. In fact, the most interesting result
was of Rassias [25] that weakens the condition for the bound of the norm of Cauchy difference f(x+ y) −
f(x) − f(y). For further details and discussions, we recommend the book by Jung [15].

At the end of 19th century, a large number of researchers contributed to the stability idea of Ulam’s
type for various types of differential equations. There are many advantages of Ulam’s type stability in
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tackling problems, related to optimization techniques, numerical analysis, control theory and many more,
in such situations to get an exact solution is challenging. For more details on Hyers-Ulam stability, see
[2, 3, 14, 16–18, 22, 23, 28–32, 35, 38, 41–54].

There are several implications of simple differential equations. Anyhow, the circumstances rather
change when a real world process undergoes with unexpected variations, like significant mechanical
processes, blood flows, heart beats, changes in population, radio physics, pharmacokinetics, mathematical
economy, chemical technology, electrical technology, chemistry, different engineering fields, control theory
and so on, see [6, 7, 21]. Sufficiently many mathematical problems in such circumstances generate a
polished differential equation, which is known as impulsive differential equation.

More precisely, there are three parts of differential equations with impulse impact: an instantaneous
impulsive differential equation [38], in which the impulse action is defined at certain discrete points;
non-instantaneous impulsive differential equation [47], it establishes the effect of impulse on an interval;
and the third one is an impulse rule, in which we define a distinct and well defined collection of impulse
events having an active impulse equation.

Fractional differential and integral equations [47] play a key role not only in mathematics but also in
the modeling of various physical phenomena in physics, control systems and dynamical systems. In fact,
fractional order derivatives and integrals are assumed to be more realistic and practical than derivatives
and integrals of integral order. These are excellent tools to model genetic transformation and memory
retention qualities of several systems and products.

It is to be noted that, the pioneer of the Ulam’s type stability for impulsive ordinary differentiable
equation is Wang et al. [36]. Following their own work, in 2014, they proved the Hyers-Ulam-Rassias
stability and generalized Hyers-Ulam-Rassias stability of impulsive evolution equations on a compact
interval [37] which then they extended for infinite impulses in the same paper. Wang and Zhang [39],
initially offered nonlinear differential equations having fractional integrable impulses, which are more
interesting. They presented four Bielecki-Ulam’s type stabilities for this class of differential equations.
Also Lin et al. [19] discussed the existence and stability results for impulsive integro-differential equa-
tions. The work of Wang et al. [39] was extended by Zada et al. [43] in which they discussed Hyers-
Ulam stability of higher-order nonlinear differential equations with fractional integrable impulses. They
established Bielecki-Ulam-Hyers-Rassias stability, generalized Bielecki-Ulam-Hyers-Rassias stability and
Bielecki-Ulam-Hyers stability for this class of differential equations on a compact interval.

However, despite the situations where only impulsive factor is involved or delay effects happened, we
have a wide variety of evolutionary processes together delay and impulsive effects exist in their state. To
model such phenomena which are subject to impulsive perturbations as the time delays, an impulsive
delay differential equation is used.

The theory of dynamic equations on time scales has been rising fast and has acknowledged a lot
of interest in recent years. This theory was introduced by Hilger [12] in 1988, with the inspiration to
provide a unification of continuous and discrete calculus. For more details on time scales, see [1, 4, 5, 8–
11, 20, 24, 27, 29–31, 40, 48, 49].

Recently, Zada et al. [49] obtained very interesting results about the Hyers-Ulam stability of nonlin-
ear impulsive Volterra integro-delay dynamic system on time scales. But as far as we know that, the
stability observations of Ulam’s type of non-linear Volterra integro-delay dynamic systems having non-
instantaneous impulses are also not yet investigated .

Motivated by the work done in [30, 49], the utmost purpose of this manuscript is to find different
Hyers-Ulam and Hyers-Ulam-Rassias outcomes of stability for the following non-linear Volterra integro-
dynamic system of the form

z∆(t) = A(t)z(t) +

∫t
t0

K(t, s, z(s))∆s, z(t0) = z0, (1.1)

and for the following nonlinear Volterra integro-delay dynamic system with non-instantaneous impulses
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of the form

ω∆(t) =M(t)ω(t) +

∫t
t0

K(t, s,ω(s),ω(h(s)))∆s, t ∈ (si, ti+1]∩ TS, i = 0, 1, . . . ,m,

ω(t) = gi(t,ω(t),ω(h(t))), t ∈ (ti, si]∩ TS, i = 1, 2, . . . ,m,
ω(t) = α(t), t ∈ [s0 − λ, s0]∩ TS,
ω(t0) = α(t0) = ω0,

(1.2)

where λ > 0, A(t) and M(t) are continuous and piecewise continuous on TS0 := [t0, tf]TS , respectively,
0 = t0 = s0 < t1 6 s1 6 t2 < · · · < tm 6 sm 6 tm 6 tm+1 = tf are pre-fixed numbers, K(t, s, z(s))
and K(t, s, z(s), z(h(s))) are continuous and piecewise continuous operators on Γ = {(t, s, z) : t0 6 s 6
t 6 tf, z ∈ Rn}, respectively, gi : (ti, si] ∩ TS × Rn × Rn → Rn, i = 1, 2, . . . ,m are continuous functions,
and φ : [s0 − λ, s0] ∩ TS → Rn is history function. Moreover, h : [s0 − λ, tf] ∩ TS → (si, ti+1] ∩ TS is a delay
function with the consumption of continuity, additionally h(t) 6 t.

2. Preliminaries

In this section, we recall the main definitions and some basic notations of time scales calculus.
An arbitrary non-empty closed subset of real numbers TS is called a time scale. The forward jump

operator Θ : TS → TS, backward jump operator ρ : TS → TS, and graininess operator µ : TS → [0,∞), are
defined by:

Θ(s) = inf{t ∈ TS : t > s}, ρ(s) = sup{t ∈ TS : t < s}, µ(s) = Θ(s) − s,

respectively. An arbitrary t ∈ TS is called left scattered (resp. left dense) when t < ρ(t) (resp. t = ρ(t)).
While, in case of t < Θ(t) (resp. Θ(t) = t), we call t is right scattered (resp. right dense). For a time scale
TS, the set of all limiting points TSz is called the derived set and illustrated as follows:

TS
z =

{
TS\(ρ(sup TS), sup TS], if sup TS <∞,
TS, if sup TS =∞.

The function W : TS → R is called regressive (resp. positively regressive) if 1 + µ(t)W(t) 6= 0, ( resp.
1 + µ(t)W(t) > 0) ∀ t ∈ TSz. The set of all right-dense continuous regressive functions (resp. right-
dense continuous positively regressive functions) will be denoted by RG(TS) (resp. RG(TS)

+). The delta
derivative of the function W : TS → R on t ∈ TzS , is given by

W∆(t) = lim
s→t, s6=Θ(t)

W(Θ(t)) −W(s)

Θ(t) − s
.

For a rd-continuous function W : TS → R, the ∆-integral is defined to be∫b
a

W(t)∆t = w(b) −w(a), for alla,b ∈ TS,

where w is the anti-derivative of W, i.e., w∆ =W on TSz.
For p ∈ RG(TS), the generalized exponential function is defined by

ep(a,b) = exp

(∫b
a

αµ(s)p(s)∆s

)
for all a,b ∈ TS,

while

αµ(t)p(t) =


Log(1 + µ(t)p(t))

µ(t)
, if µ(t) 6= 0,

p(t), if µ(t) = 0,
is the cylindrical transformation.

The fundamental matrix ΨM(t, t0) is the unique solution of the dynamic equation ω∆(t) =M(t)ω(t),
ω(t0) = ω0, t ∈ TS0.
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3. Basic concepts and remarks

Consider C(TS0,Rn) be the Banach space of continuous functions with norm ||z|| = supt∈TS0 ||z(t)||.
Let C(J,Rn) (resp. PC(J,Rn)) be the Banach space of all continuous functions (resp. the Banach space of
piecewise continuous functions) with the norm ||z||∞ = supJ ||z(t)||, J = [s0 − λ, tf] ∩ TS and R represents
the set of real numbers. Finally, we denote by PC1(J,Rn) = {z ∈ PC(J,Rn) : z∆ ∈ PC(J,Rn)}, the Banach
space with norm ‖z‖1 = sup{‖z‖∞, ‖z∆‖∞}. Here, we denote by ‖x‖ =

∑n
i=1 |xi| for x = (x1, . . . , xn) ∈ Rn.

Consider the following inequalities∣∣∣∣∣∣∣∣y∆(t) −A(t)y(t) − ∫t
t0

K(t, s,y(s))∆s
∣∣∣∣∣∣∣∣ 6 ε; t ∈ TS0, (3.1)∣∣∣∣∣∣∣∣y∆(t) −A(t)y(t) − ∫t

t0

K(t, s,y(s))∆s
∣∣∣∣∣∣∣∣ 6 ϕ(t); t ∈ TS0, (3.2)

∣∣∣∣φ∆(t) −M(t)φ(t) −

∫t
t0

K(t, s,φ(s),φ(h(s)))∆s
∣∣∣∣ 6 ε, t ∈ (si, ti+1]∩ TS, i = 0, 1, . . . ,m,∣∣∣∣φ(t) − gi(t,φ(t),φ(h(t)))∣∣∣∣ 6 ε, t ∈ (ti, si]∩ TS, i = 1, 2, . . . ,m,

(3.3)


∣∣∣∣φ∆(t) −M(t)φ(t) −

∫t
t0

K(t, s,φ(s),φ(h(s)))∆s
∣∣∣∣ 6 ϕ(t), t ∈ (si, ti+1]∩ TS, i = 0, 1, . . . ,m,∣∣∣∣φ(t) − gi(t,φ(t),φ(h(t)))∣∣∣∣ 6 κ, t ∈ (ti, si]∩ TS, i = 1, 2, . . . ,m,

(3.4)

where ε > 0, κ > 0 and ϕ ∈ PC(J,R+) is an increasing function.

Definition 3.1. Equation (1.1) is Hyers-Ulam stable on TS0 if for every y ∈ C(TS0,Rn) satisfying (3.1),
there exists a solution y0 ∈ C(TS0,Rn) of (1.1) with ||y0(t) − y(t)|| 6 Kε, K > 0, ∀ t ∈ TS0.

Definition 3.2. Equation (1.1) is Hyers-Ulam-Rassias stable on TS0 if for every y ∈ C(TS0,Rn) satisfying
(3.2), there exists a solution y0 ∈ C(TS0,Rn) of (1.1) with ||y0(t) − y(t)|| 6 Kϕ(t), K > 0, ∀ t ∈ TS0.

Definition 3.3. Equation (1.2) is said to be stable in the sense of Hyers-Ulam, if for every ε > 0 and φ ∈
PC1(J,Rn) satisfying (3.3), there exists a solution φ0 ∈ PC1(J,Rn) of (1.2) such that ‖φ0(t) −φ(t)‖ 6 Kε

for all t ∈ J. Here K is a positive number that depends on ε.

Definition 3.4. Equation (1.2) is said to be stable in the sense of Hyers-Ulam-Rassias, provided for
every (ϕ, κ) ∈ PC(J,R+) × R>0 and for each φ ∈ PC1(J,Rn) satisfying (3.4), there exists a solution
φ0 ∈ PC1(J,Rn) of (1.2) such that the inequality ‖φ0(t) − φ(t)‖ 6 Mϕ(t) is true for all t ∈ J. Here
M > 0 depends on (ϕ, κ).

Definition 3.5. In a metric space (X;d), a mapping Λ : X → X is said to be Picard operator if it has
precisely a unique fixed point x∗ ∈ X, so that for every x ∈ X, the sequence {Λ(n)(x)}n∈N converges to x∗.

Lemma 3.6 ([8, Grönwall’s inequality, Corollary 6.7]). Let y be the rd-continuous function, p ∈ RG(TS)
+, p >

0 and α ∈ R. Then

y(t) 6 α+

∫t
t0

y(u)p(u)∆u, ∀ t ∈ TS,

implies
y(t) 6 αep(t, t0), ∀ t ∈ TS.

Lemma 3.7 ([20]). Suppose τ ∈ T+S , y, b ∈ RG(TS
+), p ∈ RG(TS

+)+ and c, bk ∈ R+, k = 1, 2, . . . , so

y(t) 6 c+
∫t
τ

p(s)y(s)∆s+
∑

τ<tk<t

bky(tk),

implies
y(t) 6 c

∏
τ<tk<t

(1 + bk)ep(t, τ), t > τ.
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Lemma 3.8 ([26, Abstract Grönwall lemma]). Let (X,d,6) be an ordered metric space and let x∗ be a fixed point
for the increasing mapping Λ : X → X. So, being arbitrary x ∈ X, x 6 Λ(x) entails x 6 x∗ and x > Λ(x) entails
x > x∗, where x∗ denotes the fixed point in Λ.

Remark 3.9. A function y ∈ C(TS0,Rn) satisfies (3.1) if and only if there is a function h ∈ C(TS0,Rn) such
that ||h(t)|| 6 ε for all t ∈ TS0 and

y∆(t) = A(t)y(t) +

∫t
t0

K(t, s,y(s))∆s+ h(t), y(t0) = y0.

We do similar remark for (3.2).

Lemma 3.10. Every y ∈ C(TS0,Rn) that satisfies (3.1) also comes out perfect on the following inequality∣∣∣∣∣∣∣∣y(t) −ΨA(t, t0)y0 −

∫t
t0

ΨA(t,Θ(s))
∫s
t0

K(s,u,y)∆u∆s
∣∣∣∣∣∣∣∣ 6 C(tf − t0)ε,

for t ∈ TS0. Here C is the bound of fundamental matrix ΨA(t,Θ(s)).

Proof. If y ∈ C(TS0,Rn) satisfies (3.1), then by Remark 3.9, we have

y∆(t) = A(t)y(t) +

∫t
t0

K(t, s,y(s))∆s+ h(t), y(t0) = y0.

Then

y(t) = ΨA(t, t0)y0 +

∫t
t0

ΨA(t,Θ(s))
∫s
t0

K(s,u,y)∆u∆s+
∫t
t0

ΨA(t,Θ(s))h(s)∆s.

So, ∣∣∣∣∣∣∣∣y(t) −ΨA(t, t0)y0 −

∫t
t0

ΨA(t,Θ(s))
∫s
t0

K(s,u,y)∆u∆s
∣∣∣∣∣∣∣∣ 6 ∫t

t0

||ΨA(t,Θ(s))||||h(s)||∆s

6 C(t− t0)ε 6 C(tf − t0)ε.

We have similar remarks for (3.2).

Remark 3.11. A function φ ∈ PC1(J,Rn) satisfies inequality (3.3) (resp. inequality (3.4)) if and only if there
exist a function f ∈ PC1(J,Rn) and a finite sequence {fk : k = 1, . . . ,m} ⊂ Rn (dependent on φ) such that
‖f(t)‖ 6 ε for all t ∈ J and ‖fi‖ 6 ε (resp. ‖fi‖ 6 κ) for every i = 1, 2, . . . ,m andφ

∆(t) =M(t)φ(t) +

∫t
t0

K(t, s,φ(s),φ(h(s)))∆s+ f(t), t ∈ (si, ti+1]∩ TS, i = 0, 1, . . . ,m,

φ(t) = gi(t,φ(t),φ(h(t))) + fi, t ∈ (ti, si]∩ TS, i = 1, 2, . . . ,m.

Lemma 3.12. If φ ∈ PC1(J,Rn) satisfies inequality (3.3) (resp. inequality (3.4)), then the following inequalities

∣∣∣∣∣∣∣∣φ(t) −φ0 −ΨM(t, t0)φ0 −

∫t
si

ΨM(t,Θ(s))
∫s
s0

K(s,u,φ(u),φ(h(u)))∆u∆s− gi(t,φ(t),φ(h(t)))
∣∣∣∣∣∣∣∣

6 (Ctf −Csi +m)ε, t ∈ (si, ti+1]∩ TS, i = 1, 2, . . . ,m,∣∣∣∣∣∣∣∣φ(t) − gi(t,φ(t),φ(h(t)))∣∣∣∣∣∣∣∣ 6 mε, (resp. mκ), t ∈ (ti, si]∩ TS, i = 1, 2, . . . ,m,

are true. Here C is the bound of fundamental matrix ΨM(t,Θ(s)).
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Proof. If φ ∈ PC1(J,Rn) satisfies (3.3), then by Remark 3.11, we haveφ
∆(t) =M(t)φ(t) +

∫t
t0

K(t, s,φ(s),φ(h(s)))∆s+ f(t), t ∈ (si, ti+1]∩ TS, i = 0, 1, . . . ,m,

φ(t) = gi(t,φ(t),φ(h(t))) + fi, t ∈ (ti, si]∩ TS, i = 1, 2, . . . ,m.
(3.5)

Clearly the solution of (3.5) is given as

φ(t) =


φ0 +ΨM(t, t0)φ0 +

∫t
si

ΨM(t,Θ(s))
( ∫s
s0

K(s,u,φ(u),φ(h(u)))∆u+ f(s)

)
∆s+ gi(t,φ(t),φ(h(t))),

t ∈ (si, ti+1]∩ TS, i = 1, 2, . . . ,m,
gi(t,φ(t),φ(h(t))) + fi, t ∈ (ti, si]∩ TS, i = 1, 2, . . . ,m.

For t ∈ (si, ti+1]∩ TS, i = 1, 2, . . . ,m, we get∣∣∣∣∣∣∣∣φ(t) −φ0 −ΨM(t, t0)φ0 −

∫t
si

ΨM(t,Θ(s))
∫s
s0

K(s,u,φ(u),φ(h(u)))∆u∆s− gi(t,φ(t),φ(h(t)))
∣∣∣∣∣∣∣∣

6
∫t
si

||ΨM(t,Θ(s))||‖f(s)‖ds+
m∑
i=1

‖fi‖ 6 (Ct−Csi +m)ε 6 (Ctf −Csi +m)ε.

Proceeding as above we derive∣∣∣∣∣∣∣∣φ(t) − gi(t,φ(t),φ(h(t)))∣∣∣∣∣∣∣∣ 6 mε, t ∈ (ti, si]∩ TS, i = 1, 2, . . . ,m.

We have similar processions for (3.4).

4. Hyers-Ulam stability of equation (1.1)

Now we are going to give our result on Hyers-Ulam stability. First we assume some of the following
conditions:

(C1) the function K is continuous with the Lipschitz condition ||K(t, s, x1) −K(t, s, x2)|| 6 Lk||x1 − x2||,
Lk > 0, for t0 6 s 6 t 6 tf and for all x1, x2 ∈ Rn;

(C2) supt∈TS0

∫t
t0
||ΨA(t,Θ(s))||

∫s
t0
Lk∆u∆s < 1;

(C3) ϕ ∈ C(TS0,Rn) is an increasing function such that for some ρ > 0∫t
t0

ϕ(s)∆s 6 ρϕ(t).

Theorem 4.1. If conditions (C1)-(C2) hold, then equation (1.1) has precisely a unique solution in C(TS0,Rn).

Proof.

i) Define an operator Λ : C(TS
0,Rn)→ C(TS

0,Rn) by

(Λz)(t) = ΨA(t, t0)z0 +

∫t
t0

ΨA(t,Θ(s))
∫s
t0

K(s,u, z)∆u∆s.

Now for any z1, z2 ∈ C(TS0,Rn), we have∣∣∣∣∣∣∣∣(Λz1)(t) − (Λz2)(t)

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣ ∫t
t0

ΨA(t,Θ(s))
∫s
t0

(K(s,u, z1) −K(s,u, z2))∆u∆s

∣∣∣∣∣∣∣∣
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6 sup
t∈TS0

∫t
t0

||ΨA(t,Θ(s))||
∫s
t0

||(K(s,u, z1) −K(s,u, z2))||∆u∆s

6 sup
t∈TS0

∫t
t0

||ΨA(t,Θ(s))||
∫s
t0

Lk||z1(u) − z2(u)||∆u∆s

6 sup
t∈TS0

||z1(t) − z2(t)|| sup
t∈TS0

∫t
t0

||ΨA(t,Θ(s))||
∫s
t0

Lk∆u∆s

6 ‖z1 − z2‖ sup
t∈TS0

∫t
t0

||ΨA(t,Θ(s))||
∫s
t0

Lk∆u∆s.

Following from (C2), the operator is strictly contractive and hence a Picard operator on C(TS0,Rn). From
(3.1), it follows that the unique fixed point of this operator is in fact the unique solution of (1.1) in
C(TS

0,Rn).

Theorem 4.2. If conditions (C1)-(C2) hold, then equation (1.1) has Hyers-Ulam stability on TS0.

Proof. Let y ∈ C(TS0,Rn) be a solution to (3.1). The unique solution z ∈ C(TS0,Rn) of the equation (1.1) is
given by

z(t) = ΨA(t, t0)z0 +

∫t
t0

ΨA(t,Θ(s))
∫s
t0

K(s,u, z)∆u∆s.

Now by using Lemma 3.9,∣∣∣∣∣∣∣∣y(t) − z(t)∣∣∣∣∣∣∣∣ 6 ∣∣∣∣∣∣∣∣y(t) −ΨA(t, t0)y0 −

∫t
t0

ΨA(t,Θ(s))
∫s
t0

K(s,u,y)∆u∆s
∣∣∣∣∣∣∣∣

+

∫t
t0

||ΨA(t,Θ(s))||
∫s
t0

||(K(s,u,y) −K(s,u, z))||∆u∆s

6 C(tf − t0)ε+

∫t
t0

||ΨA(t,Θ(s))||
∫s
t0

Lk||y(u) − z(u)||∆u∆s.

Next, we show that the operator T : C(TS
0,R+)→ C(TS

0,R+) given below is an increasing Picard operator,

(Tg)(t) = C(tf − t0)ε+

∫t
t0

||ΨA(t,Θ(s))||
∫s
t0

Lkg(u)∆u∆s. (4.1)

For any g1,g2 ∈ C(TS0,R+), we have∣∣∣∣∣∣∣∣(Tg1)(t) − (Tg2)(t)

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣ ∫t
t0

||ΨA(t,Θ(s))||
∫s
t0

Lk
(
g1(u) − g2(u)

)
∆u∆s

∣∣∣∣∣∣∣∣
6 sup
t∈TS0

∫t
t0

||ΨA(t,Θ(s))||
∫s
t0

Lk||g1(u) − g2(u)||∆u∆s

6 sup
t∈TS0

||g1(t) − g2(t)|| sup
t∈TS0

∫t
t0

||ΨA(t,Θ(s))||
∫s
t0

Lk∆u∆s

6 ‖g1 − g2‖ sup
t∈TS0

∫t
t0

||ΨA(t,Θ(s))||
∫s
t0

Lk∆u∆s.

Since
(

supt∈TS0

∫t
t0
||ΨA(t,Θ(s))||

∫s
t0
Lk∆u∆s

)
< 1, so the operator is contractive on C(TS0,R+). Applying

Banach contraction principle, T is Picard operator with unique fixed point g∗ ∈ C(TS0,R+), i.e.,

g∗(t) = C(tf − t0)ε+

∫t
t0

||ΨA(t,Θ(s))||
∫s
t0

Lkg
∗(u)∆u∆s.
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For some Mk > 0, we have ||ΨA(t,Θ(s))|| = supt∈TS0 ||ΨA(t,Θ(s))|| 6Mk, so

g∗(t) 6 C(tf − t0)ε+

∫t
t0

Mk

∫s
t0

Lkg
∗(u)∆u∆s.

By Lemma 3.6, we get
g∗(t) 6 C(tf − t0)εeP(t, t0),

where P(s) =
∫s
t0
LkMk∆u. If we set g(t) = ||y(t) − z(t)||, then from (4.1), g(t) 6 (Tg)(t) from which by

using abstract Grönwall lemma, it follows that g(t) 6 g∗(t), thus∣∣∣∣∣∣∣∣y(t) − z(t)∣∣∣∣∣∣∣∣ 6 C(tf − t0)εeP(t, t0).

Similarly, by following the same process, we can prove that:

Theorem 4.3. If conditions (C1)-(C3) hold, then equation (1.1) has Hyers-Ulam-Rassias stability on TS0.

5. Hyers-Ulam stability of equation (1.2)

Onward we will state our major results. The first solution to be establish is Hyers-Ulam stability. First
we assume some of the following conditions:

(A1) the function K is piecewise continuous with the Lipschitz condition ||K(t, s, x1, x2)−K(t, s,y1,y2)|| 6∑2
k=1 L||xk − yk||, L > 0, for all t ∈ (si, ti+1]∩ TS, i = 0, 1, . . . ,m and xk,yk ∈ Rn, k ∈ {1, 2};

(A2) gi : (ti, si] ∩ TS × Rn × Rn → Rn satisfies the Lipschitz condition ||gi(t,u1,u2) − gi(t, v1, v2)|| 6∑2
k=1 Lgi ||uk − vk||, Lgi > 0, for all t ∈ (ti, si]∩ TS, i = 1, 2, . . . ,m and u1,u2, v1, v2 ∈ R ;

(A3)
(∑

0<si<t 2Li + 2CL
∫t
si

∫s
s0
∆u∆s

)
< 1, i = 1, 2, . . . ,m;

(A4) ϕ ∈ PC(J,R+) is increasing so that for some ρ > 0∫t
t0

ϕ(r)∆r 6 ρϕ(t).

Theorem 5.1. If conditions (A1)-(A3) hold, then equation (1.2) has precisely a unique solution in PC1(J, Rn).

Proof.

i) Determine an operator Λ : PC(J,Rn)→ PC(J,Rn), as

(Λω)(t) =



α(t), t ∈ [s0 − λ, s0]∩ TS,
gi(si,ω(si),ω(h(si))), t ∈ (ti, si]∩ TS, i = 1, 2, . . . ,m, α ∈ (0, 1),
α(t0) +ΨM(t, t0)ω0 + gi(si,ω(si),ω(h(si)))

+

∫t
si

ΨM(t,Θ(s))
∫s
s0

K(s,u,ω(u),ω(h(u)))∆u∆s,

t ∈ (si, ti+1]∩ TS, i = 1, 2, . . . ,m, α ∈ (0, 1).

(5.1)

For any ω1, ω2 ∈ PC(J,Rn), t ∈ (si, ti+1]∩ TS, i = 1, 2, . . . ,m, we have∣∣∣∣(Λω1)(t) − (Λω2)(t)
∣∣∣∣ 6 ∣∣∣∣gi(si,ω1(si),ω1(h(si))) − gi(si,ω2(si),ω2(h(si)))

∣∣∣∣
+

∫t
si

∣∣∣∣ΨM(t,Θ(s))
∣∣∣∣∣∣∣∣∣∣∣∣ ∫s

s0

K(s,u,ω1(u),ω1(h(u)))∆u∆s
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−

∫s
s0

K(s,u,ω2(u),ω2(h(u)))∆u∆s

∣∣∣∣∣∣∣∣
6 Li‖ω1(si) −ω2(si)‖+ Li‖ω1(h(si)) −ω2(h(si))‖

+ L

∫t
si

∣∣∣∣ΨM(t,Θ(s))
∣∣∣∣ ∫s
s0

∣∣∣∣ω1(u) −ω2(u)
∣∣∣∣∆u∆s

+ L

∫t
si

∣∣∣∣ΨM(t,Θ(s))
∣∣∣∣ ∫s
s0

∣∣∣∣ω1(h(u)) −ω2(h(u))
∣∣∣∣∆u∆s

6
∑

0<si<t

Li‖ω1(si) −ω2(si)‖+
∑

0<si<t

Li‖ω1(h(si)) −ω2(h(si))‖

+ 2CL
∫t
si

∫s
s0

‖ω1 −ω2‖∞∆u∆s
6
∑

0<si<t

2Li‖ω1 −ω2‖∞ + 2CL
∫t
si

∫s
s0

‖ω1 −ω2‖∞∆u∆s
6

( ∑
0<si<t

2Li + 2CL
∫t
si

∫s
s0

∆u∆s

)
‖ω1 −ω2‖∞.

According to (A3), we are dealing here with the strictly contractive operator on (si, ti+1] ∩ TS, i =
1, 2, . . . ,m, and hence a Picard operator on PC(J,Rn). Regarding to (5.1), it shows that the unique so-
lution of equation (1.2) in PC1(J,Rn) is in fact the unique fixed point of this operator.

Theorem 5.2. If conditions (A1)-(A3) hold then equation (1.2) has Hyers-Ulam stability on J.

Proof. Assume that (3.1) has a solution PC1(J,Rn). Then for dynamic equation (1.2), we have the unique
solution

ω(t) =



α(t), t ∈ [s0 − λ, s0]∩ TS,
gi(t,ω(t),ω(h(t))), t ∈ (ti, si]∩ TS, i = 1, 2, . . . ,m, α ∈ (0, 1),

α(t0) +ΨM(t, t0)ω0 + gi(si,ω(si),ω(h(si))) +

∫t
si

ΨM(t,Θ(s))
∫s
s0

K(s,u,ω(u),ω(h(u)))∆u∆s,

t ∈ (si, ti+1]∩ TS, i = 1, 2, . . . ,m, α ∈ (0, 1).

We observe that for all t ∈ (si, ti+1]∩ TS, i = 1, 2, . . . ,m, using Lemma 3.12, we have

∣∣∣∣φ(t) −ω(t)
∣∣∣∣ 6 ∣∣∣∣φ(t) −φ0 −ΨM(t, t0)φ0 −

∫t
si

ΨM(t,Θ(s))
∫s
s0

K(s,u,φ(u),φ(h(u)))∆u∆s

− gi(t,φ(t),φ(h(t)))
∣∣∣∣+ ∣∣∣∣gi(si,φ(si),φ(h(si))) − gi(si,ω(si),ω(h(si)))

∣∣∣∣
+

∫t
si

∣∣∣∣ΨM(t,Θ(s))
∣∣∣∣ ∫s
s0

∣∣∣∣K(s,u,φ(u),φ(h(u))) −K(s,u,ω(u),ω(h(u)))
∣∣∣∣∆u∆s

6 (m+Ctf −Csi)ε+
∑

0<si<t

Li‖φ(si) −ω(si)‖+
∑

0<si<t

Li‖φ(h(si)) −ω(h(si))‖

+CL

∫t
si

∫s
s0

∣∣∣∣φ(u) −ω(u)
∣∣∣∣∆u∆s+CL ∫t

si

∫s
s0

∣∣∣∣φ(h(u)) −ω(h(u))
∣∣∣∣∆u∆s.

Next, we show that the operator T : PC(J,R+)→ PC(J,R+) given below is an increasing Picard operator:

(Tg)(t) = (m+Ctf −Csi)ε+
∑

0<si<t

Lig(si) +
∑

0<si<t

Lig(h(si))
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+CL

∫t
si

∫s
s0

g(u)∆u∆s+CL

∫t
si

∫s
s0

g(h(u))∆u∆s.

For any g1, g2 ∈ PC(J,R+), t ∈ (si, ti+1]∩ TS, i = 1, 2, . . . ,m, we have∣∣∣∣(Tg1)(t) − (Tg2)(t)
∣∣∣∣ 6 ∑

0<si<t

Li‖g1(si) − g2(si)‖+
∑

0<si<t

Li‖g1(h(si)) − g2(h(si))‖

+CL

∫t
si

∫s
s0

∣∣∣∣g1(u) − g2(u)
∣∣∣∣∆u∆s+CL ∫t

si

∫s
s0

∣∣∣∣g1(h(u)) − g2(h(u))
∣∣∣∣∆u∆s

6
∑

0<si<t

2Li‖g1 − g2‖∞ + 2CL
∫t
si

∫s
s0

‖g1 − g2‖∞∆u∆s
6

( ∑
0<si<t

2Li + 2CL
∫t
si

∫s
s0

∆u∆s

)
‖g1 − g2‖∞.

Again according to (A3), we are dealing here with the strictly contractive operator on (si, ti+1] ∩ TS, i =
1, 2, . . . ,m and hence a Picard operator on PC(J,R+). Banach fixed point theorem imply, T is Picard
operator having unique fixed point g∗ ∈ PC(J,R+), i.e.,

g∗(t) = (m+Ctf −Csi)ε+
∑

0<si<t

Lig
∗(si) +

∑
0<si<t

Lig
∗(h(si))

+CL

∫t
si

∫s
s0

g∗(u)∆u∆s+CL

∫t
si

∫s
s0

g∗(h(u))∆u∆s.

As, g∗ is increasing, therefore g∗(h(t)) 6 g∗(t), further we can write

g∗(t) 6 (m+Ctf −Csi)ε+
∑

0<si<t

2Lig∗(si) + 2CL
∫t
si

∫s
s0

g∗(u)∆u∆s.

Using Lemma 3.7, we have

g∗(t) 6 (m+Ctf −Csi)ε
∏

0<si<t

(1 + 2Li)eq(t, si),

where q = 2CL
∫s
s0
∆u. If we determine g = ||φ−ω||, then g(t) 6 (Tg)(t), which follows by utilizing

abstract Grönwall lemma that g(t) 6 g∗, hence

||φ(t) −ω(t)|| 6 (m+Ctf −Csi)ε
∏

0<si<t

(1 + 2Li)eq(t, si).

Similarly we can establish the Hyers-Ulam-Rassias stability of (1.2) on J. Its proof will be omitted.

Theorem 5.3. If conditions (A1)-(A4) hold, then, equation (1.2) has Hyers-Ulam-Rassias stability on J.

Example 5.4. Consider the following semilinear Volterra integro-dynamic equation:

ω∆(t) = (t− 2)ω(t) +

∫t
t0

ep(t,ω(s))∆s, ω(0) = 1, t ∈ [0, 3]TS , (5.2)

and its associated inequality

∣∣φ∆(t) − (t− 2)φ(t) −
∫t
t0

ep(t,φ(s))∆s
∣∣ 6 1.5, t ∈ [0, 3]TS . (5.3)
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Setting p(t) = (t− 2) and K(t, s,ω(s)) = ep(t,ω(s)) = ep(t, s)ep(s,ω(s)) for t ∈ TS and put ε = 1.5. If
φ ∈ P1

C([0, 3]TS ,R) satisfies the inequality (5.3), then there exists f ∈ P1
C([0, 3]TS ,R) such that |f(t)| 6 1.5 for

t ∈ TS. So we have

φ∆(t) = (t− 2)φ(t) +
∫t
t0

ep(t,φ(s))∆s+ f(t), t ∈ TS,

and the solution of Eq. (5.2) is given as

ω(t) = ep(t, 0) +
∫t

0
ep(t,Θ(s))

∫s
0
ep(s,ω(u))∆u∆s.

Based on our theoretical results, Eq. (5.2) has a unique solution in P1
C([0, 3]TS ,R) and is Hyers-Ulam stable

on [0, 3]TS .

6. Conclusion

This manuscript is about the establishment of Hyers-Ulam stability and Hyers-Ulam-Rassias stability
of (1.1) and (1.2) with the utilization of fixed point approach. Furthermore, abstract Grönwall lemma,
Lemma 3.6, and Lemma 3.7 presented a fruitful outcome to our end. Our work assures the existence of an
exact solutions of (1.1) and (1.2) near to approximate solution. We added an example to show the validity
of our results. In fact, our results are significant when finding exact solution is quite difficult and hence
are important in approximation theory etc.
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S. O. Shah, A. Zada, C. Tunç, Math. Nat. Sci., 4 (2019), 13–25 25

[52] A. Zada, F. Ullah Khan, U. Riaz, T. X. Li, Hyers–Ulam stability of linear summation equations, Punjab Univ. J. Math.
(Lahore), 49 (2017), 19–24.

[53] A. Zada, P. U. Wang, D. Lassoued, T. X. Li, Connections between Hyers–Ulam stability and uniform exponential stability
of 2–periodic linear nonautonomous systems, Adv. Difference Equ., 2017 (2017), 7 pages.

[54] A. Zada, M. Yar, T. X. Li, Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional
differential equations with integral boundary conditions, Ann. Univ. Paedagog. Crac. Stud. Math., 17 (2018), 103–125.
1

https://www.researchgate.net/profile/Akbar_Zada/publication/311417771_Hyers-Ulam_Stability_of_Linear_Summation_Equations/links/5845286008ae8e63e627300b/Hyers-Ulam-Stability-of-Linear-Summation-Equations.pdf
https://www.researchgate.net/profile/Akbar_Zada/publication/311417771_Hyers-Ulam_Stability_of_Linear_Summation_Equations/links/5845286008ae8e63e627300b/Hyers-Ulam-Stability-of-Linear-Summation-Equations.pdf
https://doi.org/10.1186/s13662-017-1248-5
https://doi.org/10.1186/s13662-017-1248-5
https://doi.org/10.2478/aupcsm-2018-0009
https://doi.org/10.2478/aupcsm-2018-0009

	Introduction
	Preliminaries
	Basic concepts and remarks
	Hyers-Ulam stability of equation (1.1)
	Hyers-Ulam stability of equation (1.2)
	Conclusion

