A fixed point theorem in ordered G-metric spaces with its application via new functions

Stojan Radenovića,b, Arslan Hojat Ansaric,d, Ali Turabe,*, Muaadh Almahalebif

aNonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
bFaculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
cDepartment of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.
dDepartment of Mathematics, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran.
eDepartment of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University Rangsit Center, Pathum Thani 12121, Thailand.
fDepartment of Mathematics, Ibn Tofail University, Kenitra, Morocco.

Abstract

In this paper, we will investigate a fixed point theorem for (ψ, φ)-weak contraction via new functions in generalized ordered metric spaces. Furthermore, we present an illustrative application in integral equations.

Keywords: Ω-distance, fixed point, G-metric space, $(\psi; \varphi)$-weak contraction.

2010 MSC: 47H10, 54H25.

1. Introduction and preliminaries

The notion of metric space, introduced by Fréchet in 1906, is one of the useful topic not only in mathematics but also in several quantitative sciences. Due to its importance and application potential, this notion has been extended, improved and generalized in many ways. An incomplete list of such attempts are following: symmetric space, b-metric space, partial metric space, partially ordered metric spaces, quasi-metric space, fuzzy metric space, dislocated metric space, dislocated quasi-metric space, right and left dislocated metric spaces, etc.

In 1922, Banach proved that a contraction mapping on a complete metric space possesses a unique fixed point. Banach contraction theorem is one of the pivotal results of functional analysis. It has many applications in various fields of mathematics such as functional equations, differential equations, integral equations, etc. After Banach contraction theorem number of fixed point theorems have been established...
by various authors and they made different generalizations of this theorem \cite{3–13, 20, 22, 29}. Some new results for contractions in partially ordered metric spaces have been given by Nieto and Rodriguez-Lopez \cite{20}, Ran and Reurings \cite{25} and Petrusel and Rus \cite{23}. The main idea in \cite{21, 25} involves combining the ideas of an iterative technique in the contraction mapping principle with those in the monotone technique. In \cite{8}, Dutta presented the concept of (\psi, \phi)-weak contraction which includes the generalizations Theorem (1.2) in \cite{15} and Theorem (1.4) in \cite{26}. Also, Mustafa and Sims \cite{18} introduced the concept of G-metric, defined an \Omega-distance on complete G-metric space and generalized the concept of \omega-distance due to Kada et al. \cite{14}.

In 2013, Gholizadeh \cite{10} considered the concept of \Omega-distance on a complete, partially ordered G-metric space and proved a fixed point theorem for (\psi, \phi)-weak contraction in generalized partially ordered metric spaces. We intend through this work to bring and share queries about a fixed point theorem for weak contraction in G-metric space. Recently, Saadaoui et al. \cite{27}, used the concept of G-metric, defined an \Omega-distance on complete G-metric space and generalized the concept of \omega-distance in integral equations.

At first we recall some definitions and results. For more information see \cite{2, 8, 16–18, 24}.

Definition 1.1 (\cite{18}). Let X be a non-empty set. A function \(G : X \times X \times X \rightarrow [0, \infty) \) is called a G-metric if the following conditions are satisfied:

(i) \(G(x, y, z) = 0 \) if \(x = y = z \) (coincidence);
(ii) \(G(x, y, z) > 0 \) for all \(x, y \in X \), where \(x \neq y \);
(iii) \(G(x, x, z) \leq G(x, y, z) \) for all \(x, y, z \in X \), with \(z \neq y \);
(iv) \(G(x, y, z) = G(p(x, y, z)) \), where \(p \) is a permutation of \(x, y, z \) (symmetry);
(v) \(G(x, y, z) \leq G(x, a, a) + G(a, y, z) \) for all \(x, y, z, a \in X \) (rectangle inequality).

A G-metric is said to be symmetric if \(G(x, y, y) = G(y, x, x) \) for all \(x, y \in X \).

Definition 1.2 (\cite{18}). Let \((X, G) \) be a G-metric space,

1. a sequence \(\{x_n\} \) in X is said to be G-Cauchy sequence if for each \(\varepsilon > 0 \) there exists a positive integer \(n_0 \) such that for all \(m, n, l \geq n_0 \), \(G(x_n, x_m, x_l) < \varepsilon \);
2. a sequence \(\{x_n\} \) in X is said to be G-convergent to a point \(x \in X \) if for each \(\varepsilon > 0 \) there exists a positive integer \(n_0 \) such that for all \(m, n \geq n_0 \), \(G(x_m, x_n, x) < \varepsilon \).

Definition 1.3 (\cite{27}). Let \((X, G) \) be a G-metric space. Then a function \(\Omega : X^3 \rightarrow [0, \infty) \) is called an \(\Omega \)-distance on X if the following conditions are satisfied:

(a) \(\Omega(x, y, z) \leq \Omega(x, a, a) + \Omega(a, y, z) \) for all \(x, y, z, a \in X \);
(b) for any \(x, y \in X \), \(\Omega(x, y, .), \Omega(x, ., y) : X \to [0, \infty) \) are lower semi-continuous;
(c) for each \(\varepsilon > 0 \) there exists a \(\delta > 0 \) such that \(\Omega(x, a, a) \leq \delta \) and \(\Omega(a, y, z) \leq \delta \) imply \(G(x, y, z) \leq \varepsilon \).

Example 1.4. Let \((X, d) \) be a metric space and \(G : X^3 \rightarrow [0, \infty) \) defined by

\[G(x, y, z) = \max\{d(x, y), d(y, z), d(x, z)\} \]

for all \(x, y, z \in X \). Then \(\Omega = G \) is an \(\Omega \)-distance on X.

Example 1.5. Let \(X = \mathbb{R} \) and consider the G-metric

\[G(x, y, z) = \frac{1}{3}(|x - y| + |y - z| + |x - z|) \]

for all \(x, y, z \in \mathbb{R} \). Then \(\Omega : \mathbb{R}^3 \rightarrow [0, \infty) \) defined by

\[\Omega(x, y, z) = \frac{1}{3}(|x - y| + |z - x|) \]

for all \(x, y, z \in \mathbb{R} \) is an \(\Omega \)-distance on \(\mathbb{R} \).
Lemma 1.6 ([27]). Let \((X, G)\) be a \(G\)-metric space and \(\Omega\) be an \(\Omega\)-distance on \(X\). Let \(x_n, y_n\) be sequences in \(X\), \(\alpha_n, \beta_n\) be sequences in \([0, \infty)\) converging to zero and let \(x, y, z, a \in X\). Then we have the following.

1. if \(\Omega(y_n, x_n, x_n) \leq \alpha_n\) and \(\Omega(x_n, y, z) \leq \beta_n\) for \(n \in \mathbb{N}\), then \(G(y_n, y, z) < \epsilon\) and hence \(y = z\);
2. if \(\Omega(y_n, x_n, x_n) \leq \alpha_n\) and \(\Omega(x_n, y, z) \leq \beta_n\) for \(m > n\), then \(G(y_m, y_m, z) \rightarrow 0\) and hence \(y_m \rightarrow z\);
3. if \(\Omega(x_n, x_m, x_l) \leq \alpha_n\) for any \(l, m, n \in \mathbb{N}\) with \(n \leq m \leq l\), then \(x_n\) is a \(G\)-Cauchy sequence;
4. if \(\Omega(x_n, a, a) \leq \alpha_n\) for any \(n \in \mathbb{N}\), then \(x_n\) is a \(G\)-Cauchy sequence.

Definition 1.7. A function \(\varphi : [0, \infty) \rightarrow [0, \infty)\) is called an ultra-altering distance function if \(\varphi\) is continuous, and \(\varphi(t) > 0\), for all \(t > 0\).

In 2014, the concept of \(C\)-class functions was introduced by Ansari [4] as the following.

Definition 1.8 ([4]). A mapping \(f : [0, \infty)^2 \rightarrow \mathbb{R}\) is called \(C\)-class function if it is continuous and satisfies following axioms:

1. \(f(s, t) \leq s\);
2. \(f(s, t) = s\) implies that either \(s = 0\) or \(t = 0\) for all \(s, t \in [0, \infty)\).

Note that for some \(f\) we have \(f(0, 0) = 0\). We denote \(C\)-class functions as \(\mathcal{C}\).

Example 1.9 ([4]). The following functions \(f : [0, \infty)^2 \rightarrow \mathbb{R}\) are elements of \(\mathcal{C}\):

1. \(f(s, t) = s - t, f(s, t) = s \Rightarrow t = 0\);
2. \(f(s, t) = ms, 0 < m < 1, f(s, t) = s \Rightarrow s = 0\);
3. \(f(s, t) = \frac{s}{1 + t(r)}; r \in (0, \infty), f(s, t) = s \Rightarrow s = 0\) or \(t = 0\);
4. \(f(s, t) = \log(t + a^s)/(1 + t), a > 1, f(s, t) = s \Rightarrow s = 0\) or \(t = 0\);
5. \(f(s, t) = \ln(1 + a^s)/2, a > e, f(s, t) = s \Rightarrow s = 0\);
6. \(f(s, t) = (s + 1)/\sqrt{1 + (1 + 1)^{r}} - 1, l > 1, r \in (0, \infty), f(s, t) = s \Rightarrow t = 0\);
7. \(f(s, t) = s \log_{1 + a} a, a > 1, f(s, t) = s \Rightarrow s = 0\) or \(t = 0\);
8. \(f(s, t) = s - \frac{1}{1 + t}, f(s, t) = s \Rightarrow t = 0\);
9. \(f(s, t) = s\beta(s), \beta : [0, \infty) \rightarrow [0, 1)\) and is continuous, \(f(s, t) = s \Rightarrow s = 0\);
10. \(f(s, t) = s - \frac{t}{1 + t}, f(s, t) = s \Rightarrow t = 0\);
11. \(f(s, t) = s - \varphi(s), f(s, t) = s \Rightarrow s = 0\), here \(\varphi : [0, \infty) \rightarrow [0, \infty)\) is a continuous function such that \(\varphi(t) = 0 \iff t = 0\);
12. \(f(s, t) = sh(s, t), f(s, t) = s \Rightarrow s = 0\), here \(h : [0, \infty) \times [0, \infty) \rightarrow [0, \infty)\) is a continuous function such that \(h(t, s) < 1\) for all \(t, s > 0\);
13. \(f(s, t) = s - (\frac{s}{1 + t})t, f(s, t) = s \Rightarrow t = 0\);
14. \(f(s, t) = \sqrt[n]{t}, f(s, t) = s \Rightarrow s = 0\).
15. \(f(s, t) = \phi(s), f(s, t) = s \Rightarrow s = 0\), here \(\phi : [0, \infty) \rightarrow [0, \infty)\) is a continuous function such that \(\phi(0) = 0\) and \(\phi(t) < t\) for \(t > 0\);
16. \(f(s, t) = \frac{s}{1 + s^2}; r \in (0, \infty), f(s, t) = s \Rightarrow s = 0\).

2. Main results

Definition 2.1. Suppose that \((X, \leq)\) is a partially ordered space and \(T : X \rightarrow X\). We say that \(T\) is non-decreasing if for \(x, y \in X\),

\[x \leq y \Rightarrow T(x) \leq T(y)\]

We denote \(\Psi = \{\psi : [0, \infty) \rightarrow [0, \infty]\}\) as the set of continuous, non-decreasing functions with \(\psi^{-1}(0) = 0\) and \(\Phi = \{\phi : [0, \infty) \rightarrow [0, \infty]\}\) as the set ultra-altering distance functions.
Theorem 2.2. Let \((X, \preceq)\) be a partially ordered space and \(f\) be a \(C\)-class function. Suppose that there exists a \(G\)-metric on \(X\) such that \((X, G)\) is a complete \(G\)-metric space. Also \(\Omega\) is an \(\Omega\)-distance on \(X\) and \(T\) is a non-decreasing mapping from \(X\) into itself. Suppose that
\[
\psi(\Omega(Tx, Ty, Tz)) \leq f(\psi(\Omega(x, y, z)), \phi(\Omega(x, y, z))) \quad \text{for all } x, y, z \in X \text{ with } x \preceq y \preceq z,
\]
where \(\phi \in \Phi, \psi \in \Psi\) and \(f \in \mathcal{C}\). Also, for every \(x \in X\)
\[
\inf(\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, Tx, y) : x \preceq Tx) > 0,
\]
for every \(y \in X\) with \(y \neq Ty\). If there exists an \(x_0 \in X\) with \(x_0 \preceq Tx_0\), then \(T\) has a fixed point. Moreover, if \(v = Tv\), then \(\Omega(v, v, v) = 0\).

Proof. If \(x_0 = Tx_0\), then the result is proved. Hence, we suppose \(x_0 \neq Tx_0\). Since \(x_0 \preceq Tx_0\) and \(T\) is non-decreasing, we obtain
\[
x_0 \preceq Tx_0 \preceq T^2x_0 \preceq \cdots \preceq T^{n+1}x_0 \preceq \cdots.
\]
Now if for some \(n \in \mathbb{N}\), \(\Omega(T^{n+1}x_0, T^{n+2}x_0, T^{n+2}x_0) = 0\), then
\[
\psi(\Omega(T^{n+1}x_0, T^{n+2}x_0, T^{n+2}x_0)) < f(\psi(\Omega(T^n x_0, T^{n+1}x_0, T^{n+1}x_0)), \phi(\Omega(T^n x_0, T^{n+1}x_0, T^{n+1}x_0)))
\]
therefore \(\Omega(T^{n+1}x_0, T^{n+2}x_0, T^{n+2}x_0) = 0\), and by part (c) of Definition 1.3, \(G(T^n x_0, T^{n+2}x_0, T^{n+2}x_0) = 0\) and consequently \(T^n x_0 = T^{n+2}x_0\), which implies \(T^n x_0\) is a fixed point of \(T\). If \(n\) is even, and \(T^n x_0\) is a fixed point of \(T\). If \(n\) is odd, then proof is complete.

Otherwise \(\Omega(T^n x_0, T^{n+1}x_0, T^{n+1}x_0) > 0\), for all \(n \in \mathbb{N}\) and we have
\[
\psi(\Omega(T^n x_0, T^{n+1}x_0, T^{n+1}x_0)) < f(\psi(\Omega(T^{n-1}x_0, T^n x_0, T^n x_0)), \phi(\Omega(T^{n-1}x_0, T^n x_0, T^n x_0))).
\] (2.1)

Then,
\[
\psi(\Omega(T^n x_0, T^{n+1}x_0, T^{n+1}x_0)) \leq \psi(\Omega(T^{n-1}x_0, T^n x_0, T^n x_0)).
\]
Similarly,
\[
\psi(\Omega(T^{n-1}x_0, T^n x_0, T^n x_0)) \leq \psi(\Omega(T^{n-2}x_0, T^{n-1}x_0, T^{n-1}x_0)).
\]
This shows that \(\{\Omega(T^n x_0, T^{n+1}x_0, T^{n+1}x_0)\}\) is non-increasing. Then, there exists \(r \geq 0\) such that
\[
\lim_{n \to \infty} \Omega(T^n x_0, T^{n+1}x_0, T^{n+1}x_0) = r.
\]
If \(r > 0\), then \(\psi(r) > 0\) and by taking \(n \to \infty\) on (2.1), we obtain
\[
\psi(r) \leq f(\psi(r), \phi(r)),
\]
which is a contraction. So,
\[
\lim_{n \to \infty} \Omega(T^n x_0, T^{n+1}x_0, T^{n+1}x_0) = 0.
\]
We claim that \(\{T^n x_0\}\) is a \(G\)-Cauchy sequence. Suppose \(\{T^n x_0\}\) is not a \(G\)-Cauchy sequence. Then, there exists \(\epsilon > 0\) and subsequences \(\{T^{n_k}x_0\}\) and \(\{T^{m_k}x_0\}\) such that \(n_k\) is the smallest integer with \(n_k > m_k > k\) and
\[
\Omega(T^{m_k}x_0, T^{n_k}x_0, T^{n_k}x_0) > \epsilon.
\]
Then,
\[
\Omega(T^{m_k}x_0, T^{n_k-1}x_0, T^{n_k-1}x_0) \leq \epsilon.
\]
By part (a) of Definition 1.3, we obtain
\[
\epsilon < \Omega(T^{m_k}x_0, T^{n_k}x_0, T^{n_k}x_0) \leq \Omega(T^{m_k}x_0, T^{n_k-1}x_0, T^{n_k-1}x_0) + \Omega(T^{n_k-1}x_0, T^{n_k}x_0, T^{n_k}x_0)
\]
Thus,

\[
\lim_{k \to \infty} \Omega(T^{nk-1}x_0, T^{nk}x_0, T^{nk}x_0) = \varepsilon.
\]

Since,

\[
\Omega(T^{nk-1}x_0, T^{nk-1}x_0, T^{nk-1}x_0) \leq \Omega(T^{nk-1}x_0, T^{nk}x_0) + \Omega(T^{nk}x_0, T^{nk}x_0),
\]

and,

\[
\psi(\varepsilon) < \psi(\Omega(T^{nk}x_0, T^{nk}x_0)) \leq f(\psi(\Omega(T^{nk-1}x_0, T^{nk-1}x_0, T^{nk-1}x_0)), \phi(\Omega(T^{nk-1}x_0, T^{nk-1}x_0, T^{nk-1}x_0))) \leq \psi(\Omega(T^{nk-1}x_0, T^{nk-1}x_0, T^{nk-1}x_0)),
\]

then, we obtain

\[
\lim_{k \to \infty} \Omega(T^{nk-1}x_0, T^{nk-1}x_0, T^{nk-1}x_0) = \varepsilon.
\]

Again, we have

\[
\psi(\varepsilon) < \psi(\Omega(T^{nk}x_0, T^{nk}x_0, T^{nk}x_0)) \leq f(\psi(\Omega(T^{nk-1}x_0, T^{nk-1}x_0, T^{nk-1}x_0)), \phi(\Omega(T^{nk-1}x_0, T^{nk-1}x_0, T^{nk-1}x_0))) \leq \psi(\Omega(T^{nk-1}x_0, T^{nk-1}x_0, T^{nk-1}x_0)).
\]

So, \(\psi(\varepsilon) \leq f(\psi(\varepsilon), \phi(\varepsilon)) \), which is a contradiction. Therefore \(\{T^nx_0\} \) is a G-Cauchy sequence. Since \(X \) is G-complete, \(\{T^nx_0\} \) converges to a point \(u \in X \). Now, for \(\varepsilon > 0 \) and by lower semi-continuity of \(\Omega \),

\[
\Omega(T^nx_0, T^mx_0, u) \leq \liminf_{p \to \infty} \Omega(T^nx_0, T^mx_0, T^px_0) \leq \varepsilon, \quad m \geq n
\]

and,

\[
\Omega(T^nx_0, u, T^lx_0) \leq \liminf_{p \to \infty} \Omega(T^nx_0, T^px_0, T^lx_0) \leq \varepsilon, \quad l \geq n.
\]

Assume that \(u \neq Tu \). Since \(T^nx_0 \leq T^{n+1}x_0 \),

\[
0 < \inf(\Omega(T^nx_0, u, T^nx_0) + \Omega(T^nx_0, u, T^{n+1}x_0) + \Omega(T^nx_0, T^{n+1}x_0, u) : n \in \mathbb{N}) \leq 3\varepsilon,
\]

which is a contradiction. Therefore, we have \(u = Tu \).

Now, if \(v = Tv \), we have

\[
\psi(\Omega(v, v, v)) = \psi(\Omega(Tv, Tv, Tv)) \leq f(\psi(\Omega(v, v, v)), \phi(\Omega(v, v, v))).
\]

So, \(\Omega(v, v, v) = 0 \).

The following corollaries are direct results of Theorem 2.2. As, if we put \(f(s; t) = ks \) with \(0 < k < 1 \),

\[
f(s; t) = s - t, \quad f(s; t) = s - t, \quad f(s; t) = \frac{s}{T-t}, \quad f(s; t) = s \log_{a+1} a, \quad \text{and} \quad f(s; t) = \sqrt{n+1} \ln(1+n), \quad n \in \mathbb{N},
\]

in Theorem 2.2 then we get the following corollaries 2.3, 2.4, 2.5, 2.6, and 2.7 respectively.

Corollary 2.3. Let \((X, \preceq) \) be a partially ordered space and \(f \) be a C-class function. Suppose there exists a G-metric on \(X \) such that \((X, G) \) is a complete G-metric space and \(\Omega \) is an \(\Omega \)-distance on \(X \) and \(T \) is a non-decreasing mapping from \(X \) into itself. Suppose that

\[
\psi(\Omega(Tx, Ty, Tz)) \leq k\psi(\Omega(x, y, z)), \quad \text{for all} \ x, y, z \in X \text{ with } x \preceq y \preceq z,
\]

where \(\psi \in \Psi \). Also, for every \(x \in X \)

\[
\inf(\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, Tx, y) : x \preceq Tx) > 0,
\]

for every \(y \in X \) with \(y \neq Ty \). If there exists an \(x_0 \in X \) with \(x_0 \preceq Tx_0 \), then \(T \) has a fixed point. Moreover, if \(v = Tv \), then \(\Omega(v, v, v) = 0 \).
Corollary 2.4. Let \((X, \preceq)\) be a partially ordered space. Suppose there exists a G-metric on \(X\) such that \((X, G)\) is a complete G-metric space and \(\Omega\) is an \(\Omega\)-distance on \(X\) and \(T\) is a non-decreasing mapping from \(X\) into itself. Suppose that

\[
\psi(\Omega(Tx, Ty, Tz)) \leq \psi(\Omega(x, y, z)) - \phi(\Omega(x, y, z)), \text{ for all } x, y, z \in X \text{ with } x \preceq y \preceq z,
\]

where \(\phi \in \Phi\) and \(\psi \in \Psi\). Also, for every \(x \in X\)

\[
\inf(\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, Tx, y) : x \preceq Tx) > 0,
\]

for every \(y \in X\) with \(y \neq Ty\). If there exists an \(x_0 \in X\) with \(x_0 \preceq Tx_0\), then \(T\) has a fixed point. Moreover, if \(v = Tv\), then \(\Omega(v, v, v) = 0\).

Corollary 2.5. Let \((X, \preceq)\) be a partially ordered space and \(f\) be a C-class function. Suppose there exists a G-metric on \(X\) such that \((X, G)\) is a complete G-metric space and \(\Omega\) is an \(\Omega\)-distance on \(X\) and \(T\) is a non-decreasing mapping from \(X\) into itself. Suppose that

\[
\psi(\Omega(Tx, Ty, Tz)) \leq \frac{\psi(\Omega(x, y, z))}{1 + \phi(\Omega(x, y, z))}, \text{ for all } x, y, z \in X \text{ with } x \preceq y \preceq z,
\]

where \(\phi \in \Phi\) and \(\psi \in \Psi\). Also, for every \(x \in X\)

\[
\inf(\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, Tx, y) : x \preceq Tx) > 0,
\]

for every \(y \in X\) with \(y \neq Ty\). If there exists an \(x_0 \in X\) with \(x_0 \preceq Tx_0\), then \(T\) has a fixed point. Moreover, if \(v = Tv\), then \(\Omega(v, v, v) = 0\).

Corollary 2.6. Let \((X, \preceq)\) be a partially ordered space and \(f\) be a C-class function. Suppose there exists a G-metric on \(X\) such that \((X, G)\) is a complete G-metric space and \(\Omega\) is an \(\Omega\)-distance on \(X\) and \(T\) is a non-decreasing mapping from \(X\) into itself. Suppose that

\[
\psi(\Omega(Tx, Ty, Tz)) \leq \psi(\Omega(x, y, z))\log_{a + \phi(\Omega(x, y, z))} a, \text{ for all } x, y, z \in X \text{ with } x \preceq y \preceq z,
\]

where \(\phi \in \Phi\) and \(\psi \in \Psi\). Also, for every \(x \in X\)

\[
\inf(\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, Tx, y) : x \preceq Tx) > 0,
\]

for every \(y \in X\) with \(y \neq Ty\). If there exists an \(x_0 \in X\) with \(x_0 \preceq Tx_0\), then \(T\) has a fixed point. Moreover, if \(v = Tv\), then \(\Omega(v, v, v) = 0\).

Corollary 2.7. Let \((X, \preceq)\) be a partially ordered space and \(f\) be a C-class function. Suppose there exists a G-metric on \(X\) such that \((X, G)\) is a complete G-metric space and \(\Omega\) is an \(\Omega\)-distance on \(X\) and \(T\) is a non-decreasing mapping from \(X\) into itself. Suppose that

\[
\psi(\Omega(Tx, Ty, Tz)) \leq \sqrt[n]{\log(1 + \psi(\Omega(x, y, z)))}, \text{ for all } x, y, z \in X \text{ with } x \preceq y \preceq z,
\]

where \(\psi \in \Psi\). Also, for every \(x \in X\)

\[
\inf(\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, Tx, y) : x \preceq Tx) > 0,
\]

for every \(y \in X\) with \(y \neq Ty\). If there exists an \(x_0 \in X\) with \(x_0 \preceq Tx_0\), then \(T\) has a fixed point. Moreover, if \(v = Tv\), then \(\Omega(v, v, v) = 0\).
Example 2.8. Let $X = [0, 1]$, the order is usual and $G(x, y, z) = \frac{1}{3}(|x - y| + |y - z| + |x - z|)$. Then (X, G) is a complete G-metric space. Suppose $\Omega(x, y, z) = \frac{1}{3}(|x - y| + |z - x|)$, $T(x) = \frac{2}{3}$, $\psi(t) = t$ and $f(s, t) = ks$ where $0 < k < 1$, then,

$$
\psi(\Omega(Tx, Ty, Tz)) = \psi(\frac{1}{3}(|Tx - Ty| + |Tz - Tx|)) \\
= \psi(\frac{1}{3}(\frac{x}{4} - \frac{y}{4} + \frac{z}{4} - \frac{x}{4})) = \frac{1}{12} |x - y| + |z - x| \leq \frac{1}{3} \psi(\Omega(x, y, z)).
$$

Also, for every $x \in X$,

$$
\inf(\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, Tx, y) : x \leq Tx) > 0,
$$

for every $y \in X$ with $y \neq Ty$. So, by Theorem 2.2, T has a fixed point that is 0.

Example 2.9. Let $X = [0, 1]$, the order is usual and $G(x, y, z) = \frac{1}{3}(|x - y| + |y - z| + |x - z|)$. Then (X, G) is a complete G-metric space. Suppose $\Omega(x, y, z) = \frac{1}{3}(|x - y| + |z - x|)$, $T(x) = \frac{2}{3}$, $\phi(t) = 1$, $\psi(t) = 15t$ and $f(s, t) = \frac{s}{1+t^2}$. Then,

$$
\psi(\Omega(Tx, Ty, Tz)) = \psi(\frac{1}{3}(|Tx - Ty| + |Tz - Tx|)) \\
= \psi(\frac{1}{3}(\frac{x}{5} - \frac{y}{5} + \frac{z}{5} - \frac{x}{5})) \\
= |x - y| + |z - x| \leq f(\psi(\Omega(x, y, z)), \phi(\Omega(x, y, z))).
$$

Also, for every $x \in X$,

$$
\inf(\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, Tx, y) : x \leq Tx) > 0,
$$

for every $y \in X$ with $y \neq Ty$. So, by Theorem 2.2, T has a fixed point that is 0.

Example 2.10. Let $X = [0, 1]$, the order is usual and $G(x, y, z) = \frac{1}{3}(|x - y| + |y - z| + |x - z|)$. Then (X, G) is a complete G-metric space. Suppose $\Omega(x, y, z) = \frac{1}{3}(|x - y| + |z - x|)$, $T(x) = \frac{2x}{1+x}$, $\psi(t) = t$ and $f(s, t) = ks$. Then,

$$
\psi(\Omega(Tx, Ty, Tz)) = \psi(\frac{1}{3}(|Tx - Ty| + |Tz - Tx|)) \\
= \psi(\frac{1}{3}(\frac{2x}{1+x} - \frac{2y}{1+y} + \frac{2z}{1+z} - \frac{2x}{1+x})) \\
= \frac{2}{3} |\frac{x}{1+x} - \frac{y}{1+y} + \frac{z}{1+z} - \frac{x}{1+x}| \leq \frac{4}{5} \psi(\Omega(x, y, z)).
$$

Also, for every $x \in X$,

$$
\inf(\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, Tx, y) : x \leq Tx) > 0,
$$

for every $y \in X$ with $y \neq Ty$. So, by Theorem 2.2, T have two fixed points 0 and 1.

We denote Λ by the set all functions $\lambda : [0, +\infty) \to [0, +\infty)$ satisfying the following hypotheses:

(i) λ is a Lebesgue-integrable mapping on each compact subset of $[0, +\infty)$;

(ii) for every $\varepsilon > 0$, we have $\int_0^\varepsilon \lambda(s) \, ds > 0$;

(iii) $||\lambda|| < 1$, where $||\lambda||$ denotes to the norm of λ.

Corollary 2.11. Let (X, \preceq) be a partially ordered space and f be a C-class function. Suppose that there exists a G-metric on X such that (X, G) is a complete G-metric space and Ω is an Ω-distance on X and T is a non-decreasing mapping from X into itself. Suppose that for all $x, y, z \in X$ with $x \preceq y \preceq z$ holds

$$
\int_0^{\psi(\Omega(Tx, Ty, Tz))} \lambda(s) \, ds \leq f\left(\int_0^{\psi(\Omega(x,y, z))} \lambda(s) \, ds, \int_0^{\phi(\Omega(x,y, z))} \lambda(s) \, ds\right),
$$

(2.2)
Let $\lambda \in \Lambda$, $\phi \in \Phi$, $\psi \in \Psi$, and $f \in \mathcal{C}$. Also, for every $x \in X$
\[\inf(\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, Tx, y) : x \preceq Tx) > 0,\]
for every $y \in X$ with $y \neq Ty$. If there exists an $x_0 \in X$ with $x_0 \preceq Tx_0$, then T has a fixed point.

Proof. Define $\gamma : [0, +\infty) \rightarrow [0, +\infty)$ by $\gamma(t) = \int_0^1 \lambda(s) ds$, then from inequality (2.2), we have
\[\gamma(\psi(\Omega(Tx, Ty, Tz))) \leq f(\gamma(\psi(\Omega(x, y, z))), \gamma(\phi(\Omega(x, y, z))))\]
which can be written as
\[\psi_1(\Omega(Tx, Ty, Tz)) \leq f(\psi_1(\Omega(x, y, z)), \phi_1(\Omega(x, y, z))),\]
where $\psi_1 = \gamma \circ \psi$ and $\phi_1 = \gamma \circ \phi$. Since the functions ψ_1 and ϕ_1 satisfy the properties of ψ and ϕ, by Theorem 2.2, T has a fixed point. \qed

3. Application

In this section, we give an existence theorem for a solution of the following integral equation:
\[x(t) = \int_0^1 K(t, s, x(s)) ds + g(t), \quad t \in [0, 1].\] (3.1)

Let $X = C([0, 1])$ be the set all continuous functions defined on $[0, 1]$. Define $G : X \times X \times X \rightarrow \mathbb{R}$ by
\[G(x, y, z) = \|x - y\| + \|y - z\| + \|z - x\|,\]
where $\|x\| = \sup\{|x(t)| : t \in [0, 1]\}$. Then (X, G) is a complete G-metric space. Let $\Omega = G$. Then Ω is an Ω-distance on X. Define an ordered relation \preceq on X by
\[x \preceq y \text{ if and only if } x(t) \leq y(t) \text{ for all } t \in [0, 1].\]

Then (X, \preceq) is a partially ordered set. Now, we prove the following result.

Theorem 3.1. Suppose the following hypotheses hold:

1. $K : [0, 1] \times [0, 1] \times \mathbb{R}^+ \rightarrow \mathbb{R}^+$ and $g : [0, 1] \rightarrow \mathbb{R}$ are continuous mappings;
2. K is nondecreasing in its first variable and g is nondecreasing;
3. There exists a continuous function $F : [0, 1] \times [0, 1] \rightarrow [0, +\infty)$ such that
\[|K(t, s, u) - K(t, s, v)| \leq F(t, s) |u - v|\]
for every comparable $u, v \in \mathbb{R}^+$ and $s, t \in [0, 1]$ with $\sup_{t \in [0, 1]} \int_0^t F(t, s) ds \leq \frac{1}{2}$;
4. Let $\phi \in \Phi$, $\psi \in \Psi$ and $f \in \mathcal{C}$, then $\psi(r) \leq f(\psi(2r), \phi(2r))$ for all $r \in [0, \infty)$.

Then the integral equation (3.1) has a solution in $C([0, 1])$.

Proof. Define $Tx(t) = \int_0^1 K(t, s, x(s)) ds + g(t)$. By hypothesis (2), we have that T is nondecreasing. Now, if
\[\inf(\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, Tx, y) : x \preceq Tx) = 0,\]
for every $y \in X$ with $y \neq Ty$, then for each $n \in \mathbb{N}$, there exists $x_n \in C([0, 1])$ with $x_n \preceq Tx_n$ such that
\[\Omega(x_n, y, x_n) + \Omega(x_n, y, Tx_n) + \Omega(x_n, Tx_n, y) \leq \frac{1}{n}.\]
Then, we have
\[
\Omega(x_n, y, Tx_n) = \sup_{t \in [0,1]} |x_n - y| + \sup_{t \in [0,1]} |y - Tx_n| + \sup_{t \in [0,1]} |Tx_n - x_n| \leq \frac{1}{n}.
\]
Thus,
\[
\lim_{n \to \infty} x_n(t) = y(t), \quad \lim_{n \to \infty} Tx_n(t) = y(t).
\]
By the continuity of \(K\), we have
\[
y(t) = \lim_{n \to \infty} Tx_n(t) = \int_0^1 K(t, s, \lim_{n \to \infty} x_n(s))\,ds + g(t) = \int_0^1 K(t, s, y(s))\,ds + g(t) = Ty(t).
\]
Which is a contradiction. Therefore,
\[
\inf(\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, Tx, y) : x \preceq Ty) > 0.
\]
Now, for \(x, y, z \in X\) with \(x \preceq y\), we have
\[
\psi(\Omega(Tx, Ty, Tz)) = \psi(\sup_{t \in [0,1]} |Tx(t) - Ty(t)| + \sup_{t \in [0,1]} |Ty(t) - Tz(t)| + \sup_{t \in [0,1]} |Tz(t) - Tx(t)|) \\
\leq \psi(\sup_{t \in [0,1]} \int_0^1 |K(t, s, x(s)) - K(t, s, y(s))|\,ds + \sup_{t \in [0,1]} \int_0^1 |K(t, s, y(s)) - K(t, s, z(s))|\,ds \\
+ \sup_{t \in [0,1]} \int_0^1 |K(t, s, z(s)) - K(t, s, x(s))|\,ds) \\
\leq \psi(\sup_{t \in [0,1]} \int_0^1 F(t, s) |x(s) - y(s)|\,ds + \sup_{t \in [0,1]} \int_0^1 F(t, s) |y(s) - z(s)|\,ds \\
+ \sup_{t \in [0,1]} \int_0^1 F(t, s) |z(s) - x(s)|\,ds) \\
= \psi(\sup_{t \in [0,1]} (|x(t) - y(t)|) \sup_{t \in [0,1]} \int_0^1 F(t, s)\,ds + \sup_{t \in [0,1]} (|y(t) - z(t)|) \sup_{t \in [0,1]} \int_0^1 F(t, s)\,ds \\
+ \sup_{t \in [0,1]} (|z(t) - x(t)|) \sup_{t \in [0,1]} \int_0^1 F(t, s)\,ds) \\
\leq \psi\left(\frac{1}{2} \sup_{t \in [0,1]} (|x(t) - y(t)|) + \frac{1}{2} \sup_{t \in [0,1]} (|y(t) - z(t)|) + \frac{1}{2} \sup_{t \in [0,1]} (|z(t) - x(t)|)\right) \\
\leq \psi\left(\frac{1}{2} \Omega(x, y, z)\right) \leq f(\psi(\Omega(x, y, z)), \phi(\Omega(x, y, z))).
\]
Thus, by Theorem 2.2, there exists a solution \(u \in C[0,1]\) of the integral equation (3.1). \(\square\)

Now, we present the following corollaries as an example of our result.

Corollary 3.2. Suppose the following hypotheses hold:

1. \(K : [0,1] \times [0,1] \times \mathbb{R}^+ \to \mathbb{R}^+\) and \(g : [0,1] \to \mathbb{R}\) are continuous mappings;
2. \(K\) is nondecreasing in its first variable and \(g\) is nondecreasing;
3. there exists a continuous function \(F : [0,1] \times [0,1] \to [0, +\infty)\) such that
\[
|K(t, s, u) - K(t, s, v)| \leq F(t, s) |u - v|.
\]
for every \(u, v \in \mathbb{R}^+\) and \(s, t \in [0,1]\) with \(\sup_{t \in [0,1]} \int_0^1 F(t, s)\,ds \leq \frac{1}{2}\)
(4) there exist continuous, non-decreasing function \(\psi : [0, \infty) \to (0, \infty) \) with \(\psi^{-1}(0) = 0 \) and \(\psi(r) \leq k\psi(2r), 0 < k < 1 \) for all \(r \in [0, \infty) \).

Then the integral equation (3.1) has a solution in \(C([0,1]) \).

Corollary 3.3. Suppose the following hypotheses hold:

1. \(K : [0,1] \times [0,1] \times \mathbb{R}^+ \to \mathbb{R}^+ \) and \(g : [0,1] \to \mathbb{R} \) are continuous mappings;
2. \(K \) is nondecreasing in its first coordinate and \(g \) is nondecreasing;
3. there exists a continuous function \(F : [0,1] \times [0,1] \to [0, +\infty) \) such that
 \[
 |K(t,s,u) - K(t,s,v)| \leq F(t,s) |u - v|
 \]
 for every \(u,v \in \mathbb{R}^+ \) and \(t \in [0,1] \) with \(\sup_{t \in [0,1]} \int_0^1 F(t,s)ds \leq \frac{1}{2} \);
4. let \(\phi \in \Phi, \psi \in \Psi, \) then \(\psi(r) \leq \frac{\psi(2r)}{1+\phi(2r)}, \) for all \(r \in [0, \infty) \).

Then the integral equation (3.1) has a solution in \(C([0,1]) \).

Corollary 3.4. Suppose the following hypotheses hold:

1. \(K : [0,1] \times [0,1] \times \mathbb{R}^+ \to \mathbb{R}^+ \) and \(g : [0,1] \to \mathbb{R} \) are continuous mappings;
2. \(K \) is nondecreasing in its first coordinate and \(g \) is nondecreasing;
3. there exists a continuous function \(F : [0,1] \times [0,1] \to [0, +\infty) \) such that
 \[
 |K(t,s,u) - K(t,s,v)| \leq F(t,s) |u - v|
 \]
 for every \(u,v \in \mathbb{R}^+ \) and \(t \in [0,1] \) with \(\sup_{t \in [0,1]} \int_0^1 F(t,s)ds \leq \frac{1}{2} \);
4. let \(\phi \in \Phi, \psi \in \Psi, \) then \(\psi(r) \leq \psi(2r) \log \alpha + \phi(2r) a_r \), for all \(r \in [0, \infty) \).

Then the integral equation (3.1) has a solution in \(C([0,1]) \).

Corollary 3.5. Suppose the following hypotheses hold:

1. \(K : [0,1] \times [0,1] \times \mathbb{R}^+ \to \mathbb{R}^+ \) and \(g : [0,1] \to \mathbb{R} \) are continuous mappings;
2. \(K \) is nondecreasing in its first coordinate and \(g \) is nondecreasing;
3. there exists a continuous function \(F : [0,1] \times [0,1] \to [0, +\infty) \) such that
 \[
 |K(t,s,u) - K(t,s,v)| \leq F(t,s) |u - v|
 \]
 for every \(u,v \in \mathbb{R}^+ \) and \(t \in [0,1] \) with \(\sup_{t \in [0,1]} \int_0^1 F(t,s)ds \leq \frac{1}{2} \);
4. there exist continuous, non-decreasing function \(\psi : [0, \infty) \to (0, \infty) \) with \(\psi^{-1}(0) = 0 \) and
 \[
 \psi(r) \leq \sqrt[n]{\log(1 + \psi(2r)^n)}, n \in \mathbb{N},
 \]
 for all \(r \in [0, \infty) \).

Then the integral equation (3.1) has a solution in \(C([0,1]) \).

References

[17] Z. Mustafa, H. Obiedat, F. Awawdeh, Some fixed point theorems for mapping on complete G-metric space, Fixed Point Theory Appl., 2008 (2008), 12 pages. 1

[19] Z. Mustafa, B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl., 2009 (2009), 10 pages. 1

