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Abstract
This study deals with the singularly perturbed initial value problems for a quasilinear first-order delay differential equation.

A quasilinearization technique for the appropriate delay differential problem theoretically and experimentally analyzed. The
parameter uniform convergence is confirmed by numerical computations.
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1. Introduction

Consider the following singularly perturbed quasilinear delay differential problem in the interval
Ī = [0, T ]:

εu′(t) + f(t,u(t),u(t− r)) = 0, t ∈ I, (1.1)

u(t) = ϕ(t), t ∈ I0, (1.2)

where I = (0, T ] =
m
∪

p=1
Ip, Ip =

{
t : rp−1 < t 6 rp

}
, 1 6 p 6 m and rs = sr, for 0 6 s 6 m − 1 and

rm = T(0 < T − rm−1 6 r), I0 = (−r, 0]. 0 < ε 6 1 is the perturbation parameter, r > 0 is a constant delay,
ϕ(t) and f(t,u, v) are given sufficiently smooth functions satisfying certain regularity conditions in Ī and
Ī×R2, respectively, and moreover

0 < α 6
∂f

∂u
6M1,

∣∣∣∣ ∂f∂v
∣∣∣∣ 6M∗1 .

Delay differential equations are used to model a large variety of practical phenomena in the bio-
sciences, engineering and control theory and in many other areas of science and technology, in which
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the time evolution depends not only on present states but also on states at or near a given time in the
past (see, e.g., [5, 6, 8, 11]). If we restrict the class of delay differential equations to a class in which the
highest derivative is multiplied by a small parameter, then it is said to be a singularly perturbed delay
differential equation. Such problems arise in the mathematical modeling of various practical phenomena,
for example, in population dynamics [11], the study of bistable devices [7], description of the human
pupil-light reflex [12], variational problems in control theory [13]. In the direction of numerical study of
singularly perturbed delay differential equation, several can be seen in [2–4, 9, 10, 14–18].

In the present paper we discretize (1.1)-(1.2) using a numerical method, which is composed of an
implicit finite difference scheme on piecewise-uniform S-meshes on each time-subinterval. In Section 2,
we describe the finite difference discretization and introduce the piecewise uniform grid and followed by
the quasilinearization technique for solving this problem is presented. Numerical example in comparison
with their exact solution is being presented in Section 3. The technique to construct discrete problem and
error analysis for approximate solution is similar to those ones from [3, 4, 9, 10] and [1].

Throughout the paper, C denotes a generic positive constant independent of ε and the mesh parameter.
A subscripted such constant is also independent of ε and mesh, but whose value is fixed.

2. The continuous problem

Here we show some properties of the solution of (1.1)-(1.2), which are needed in later sections for the
analysis of appropriate numerical solution. For any continuous function g(t), ‖g‖∞ denotes a continuous
maximum norm on the corresponding closed interval, in particular we shall use

‖g‖∞,p = max
Īp

|g(x)| , 0 6 p 6 m.

Lemma 2.1. The solution u(t) of the problem (1.1)-(1.2) satisfies the following estimates

‖u(t)‖∞,p 6 Cp, 1 6 p 6 m,

where

Cp = ‖ϕ‖∞,0 (1 +α−1M∗1)
p +α−1

p∑
s=1

(1 +α−1M∗1)
p−s ‖F‖∞,p , p = 1, 2, · · · ,m,

F(t) = f(t, 0, 0),

and ∣∣u′(t)∣∣ 6 C{1 +
(t− rp−1)

p−1

εp
exp

(
−
α(t− rp−1)

ε

)}
, t ∈ Ip, 1 6 p 6 m,

provided
|∂f/∂t | 6 C for t ∈ Ī and |u| , |v| 6 C0,

where
C0 = ‖ϕ‖∞,0 (1 +α−1M∗1)

m + (M∗1)
−1 ‖F‖∞,Ī {(1 +α−1M∗1)

m − 1}.

Proof. See [3].

3. Difference algorithm and quasilinearization

Let ω̄N0 be any non-uniform mesh on Ī:

ω̄N0 = {0 = t0 < t1 < · · · < tN0 = T , τi = ti − ti−1} ,

which contains by N mesh points at each subinterval Ip(1 6 p 6 m− 1) and [(T − rm−1)N/r] points at
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Im:
ωN,p = {ti : (p− 1)N+ 1 6 i 6 pN} , 1 6 p 6 m− 1,

ωN,m = {ti : (m− 1)N+ 1 6 i 6 N0} ,

and consequently

ωN0 =

m⋃
p=1

ωN,p.

To simplify the notation we set gi = g(ti) for any function g(t), and moreover yi denotes an approxi-
mation of u(t) at ti. For any mesh function {wi} defined on ω̄N0 we use

wt̄,i = (wi −wi−1)/τi,

‖w‖∞,N,p = ‖w‖∞,ωN,p
:= max

16i6N
|wi| .

For the difference approximation to (1.1), we integrate (1.1) over (ti−1, ti):

εut̄,i + τ
−1

ti∫
ti−1

f(t,u(t),u(t− r))dt = 0,

which yields the relation
εut̄,i + f(ti,ui,ui−N) + Ri = 0, 1 6 i 6 N0, (3.1)

with the local truncation error

Ri = −τ−1
i

ti∫
ti−1

{
(t− ti−1)

d

dt
f(t,u(t),u(t− r))

}
dt.

As a consequence of (3.1), we propose the following difference scheme for approximation (1.1)-(1.2)

εyt̄,i + f(ti,yi,yi−N) = 0, 1 6 i 6 N0, (3.2)

yi = ϕi, −N 6 i 6 0. (3.3)

The difference scheme (3.2)-(3.3), in order to be ε-uniform convergent, we will use the Shishkin mesh.
For the even number N, the piecewise uniform mesh ωN,p divides each of the interval [rp−1, σp] and
[σp, rp] into N/2 equidistant subintervals, where the transition point σp, which separates the fine and
coarse portions of the mesh is obtained by

σp = rp−1 + min
{
r/2, α−1θpε lnN

}
, for 1 6 p 6 m− 1,

σm = rm−1 + min
{
(T − rm−1)/2, α−1θmε ln Ñ

}
,

where θ1 > 1 and θp > 1 (2 6 p 6 m) are some constants, Ñ = [(T − rm−1)N/r] (if Ñ is odd then we
take Ñ = [(T − rm−1)N/r] + 1). Hence, denoting by τ(1)

p and τ(2)
p the stepsizes in [rp−1, σp] and [σp, rp]

respectively, we have

τ
(1)
p = 2(σp − rp−1)N

−1, τ
(2)
p = 2(rp − σp)N

−1, 1 6 p 6 m− 1,

τ
(1)
m = 2(σm − rm−1)Ñ

−1, τ
(2)
m = 2(T − σm)Ñ−1,

so

ω̄N,p =

{
ti = rp−1 + (i− (p− 1)N)τ

(1)
p , i = (p− 1)N, . . . , (p− 1/2)N,

ti = σp + (i− (p− 1/2)N)τ
(2)
p , i = (p− 1/2)N+ 1, . . . ,pN,

1 6 p 6 m− 1.

Analogous formula is being written for ω̄N,m via Ñ. In the rest of the paper we only consider this
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type mesh.
In [3] the authors proved that

‖y− u‖∞,ω̄N,p
6 CN−1 lnN, 1 6 p 6 m.

Now we propose the following quasilinearization algorithm for the solving the nonlinear difference
problem (3.2)-(3.3)

εy
(n)
t̄,i + f(ti,y

(n−1)
i ,y(n)

i−N) +
∂f

∂u
(ti,y

(n−1)
i ,y(n)

i−N)[yi − y
(n−1)
i ] = 0, i = 1, 2, · · · ,N, n = 1, 2, · · · . (3.4)

y
(n)
i = ϕi, −N 6 i 6 0, (3.5)

y
(0)
i given, 1 6 i 6 N.

To estimate error of the iterative process (3.4)-(3.5), we write the following relation for the exact solu-
tion of the problem (3.2)-(3.3)

εyt̄,i + f(ti,y
(n−1)
i ,y(n)

i−N) +
∂f

∂u
(ti,y

(n−1)
i ,y(n)

i−N)[yi − y
(n−1)
i ] + R

(n)
i = 0, (3.6)

with

R
(n)
i = (yi−N − y

(n)
i−N)

∂f

∂v
(ti,yi, ỹ

(n)
i−N)

+
1
2
∂2f

∂u2 (ti, ỹ
(n−1)
i ,y(n)

i−N)[yi − y
(n−1)
i ]2 = 0,

(3.7)

where the tilde indicates that the partial derivative is evaluated at an intermediate point. If

|
∂2f

∂u2 | 6M2,

for all t ∈ Ī and all real u, v, it then from (3.7) follows that

|R
(n)
i | 6M∗1 |yi−N − y

(n)
i−N|+

1
2
M2|yi − y

(n−1)
i |2. (3.8)

Let ω(n)
i = y

(n)
i − yi. Then, in view of (3.4) and (3.6), we have

εω
(n)
t̄,i +

∂f

∂u
(ti,y

(n−1)
i ,y(n)

i−N)ω
(n)
i = R

(n)
i , 1 6 i 6 N, (3.9)

ω
(n)
i , −N 6 i 6 0.

From (3.9), by using (3.8) and maximum principle we obtain

‖ω(n)‖∞,p 6 α−1‖R(n)‖∞,p

6 α−1{M1‖ω(n)‖∞,p−1 +
1
2
M2‖ω(n−1)‖2∞,p}.

Resolving this in respect to linear part, we get

‖ω(n)‖∞,p 6
1
2
α−1M2

p∑
s=1

(αM1)
p−s‖ω(n−1)‖2∞,p.

Thereby
‖ω(n)‖∞,Ī 6 q‖ω(n−1)‖2∞,Ī,

where
q =

1
2
α−1M2(αM1 − 1)−1(αM1)

m − 1.

Thus for sufficiently good initial guess the iterative process (3.4)-(3.5) converges quadratically.
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At last we note that, the relation (3.4) can be rewritten as

y
(n)
i = y

(n−1)
i −

(y
(n−1)
i − y

(n)
i−1)ρ

−1
i + f(ti,y

(n−1)
i ,y(n)

i−N)

∂f
∂u(ti,y

(n−1)
i ,y(n)

i−N) + ρ−1
i

, i = 1, 2, · · · ,N− 1, n = 1, 2, · · · .

4. Numerical results

We now look at computational results a particular problem

εu′(t) + 2u(t) = u(t) ∗ u(t− 1), t ∈ (0,∞), u(t) = 1, −1 6 t 6 0.

The exact solution for 0 6 t 6 2 is given by

u(t) =

{
e−t/ε, t ∈ (0, 1],
e1−e(1−t)/ε ∗ e(1−2t)/ε, t ∈ (1, 2] .

We define the exact error eN,p
ε and the computed parameter-uniform maximum pointwise error eN,p as

follows:
eN,p
ε = ‖y− u‖∞,ωN,p

, p = 1, 2,

eN,p = max
ε
eN,p
ε , p = 1, 2,

where y is the numerical approximation to u for various values ofN, ε, θ1, θ2. We also define the computed
parameter-uniform rate of convergence to be

rN,p = ln
(
eN,p/e2N,p) / ln 2, p = 1, 2.

The values of ε for which we solve the test problem are ε = 2−i, i = 1, 2, 4, · · · , 12.

Table 1: Exact errors eN,1
ε , computed ε-uniform errors eN,1 and convergence rates rN,1.

ε N = 64 N = 128 N = 256 N = 512 N = 1024
2−1 0.00582415

1.00
0.00289292
1.00

0.00144173
1.00

0.00071968
1.00

0.00035955

2−2 0.0118053
1.01

0.00582415
1.00

0.00289292
1.00

0.00144173
1.00

0.00071968

2−4 0.0242705
1.03

0.0118056
1.00

0.00582415
1.00

0.00289292
1.00

0.00144173

2−6 0.0252618
0.81

0.0144056
0.82

0.00811589
0.84

0.00452842
0.85

0.00250043

2−8 0.0252618
0.81

0.0144056
0.82

0.00811589
0.84

0.00452842
0.85

0.00250043

2−10 0.0252618
0.81

0.0144056
0.82

0.00811589
0.84

0.00452842
0.85

0.00250043

2−12 0.0252618
0.81

0.0144056
0.82

0.00811589
0.84

0.00452842
0.85

0.00250043

eN,1

rN,1
0.0252618
0.81

0.0144056
0.82

0.00811589
0.84

0.00452842
0.85

0.00250043
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Table 2: Exact errors eN,2
ε , computed ε-uniform errors eN,2 and convergence rates rN,2.

ε N = 64 N = 128 N = 256 N = 512 N = 1024
2−1 0.00425125

1.00
0.00212012
1.00

0.00105868
1.00

0.000528998
1.00

0.00026441

2−2 0.00224024
0.98

0.00113262
0.99

0.00056935
1.00

0.000285434
1.00

0.00014290

2−4 0.00141144
0.87

0.00077044
0.93

0.00040206
0.97

0.000205322
0.99

0.00010374

2−6 0.00141144
0.87

0.00077044
0.93

0.00040206
0.97

0.000205322
0.99

0.00010374

2−8 0.00141144
0.87

0.00077044
0.93

0.00040206
0.97

0.000205322
0.99

0.00010374

2−10 0.00141144
0.87

0.00077044
0.93

0.00040206
0.97

0.000205322
0.99

0.00010374

2−12 0.00141144
0.87

0.00077044
0.93

0.00040206
0.97

0.000205322
0.99

0.00010374

eN,1

rN,1
0.00141144
0.87

0.00077044
0.93

0.00040206
0.97

0.000205322
0.99

0.00010374

Tables 1 and 2 verify the ε-uniform convergence of the numerical solution on both subintervals and
computed rates are essentially in agreement with our theoretical analysis.

5. Conclusion

A delay differential problem for a quasilinear singularly perturbed first-order differential equation
is considered. A quasilinearization technique for the appropriate delay difference problem, which has
earlier been proposed by authors, theoretically and experimentally analyzed. This problem is solved
by employing standard backward difference operators on a non-uniform mesh which consists of the
special piecewise uniform meshes on each time subinterval. It is shown that the method displays uniform
convergence with respect to the perturbation parameter. The parameter uniform convergence is confirmed
by numerical computations.
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