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Abstract

In this paper, we propose the random Z-contraction, prove a stochastic fixed point theorem for this contraction, and show
that a solution for a non-linear stochastic integral equations exists in Banach spaces. c©2017 All rights reserved.
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1. Introduction

The random fixed point theorems are stochastic generalizations of original fixed point theorems and
need to use for the random equation theorems. In the same way the original fixed point theorems are
the important of deterministic equation theorems. In 1955, Spacek [28] and Hans [7, 8] initiated to show
the random fixed point theorems for some random contraction mappings in Polish spaces. In 1966,
Mukherjee [19] provided a Schauder’s random fixed point theorem over the space of atomic probability
measure. In 1976, the work of Bharucha-Reid [5] allured the attention of various mathematic researchers
and bring to the development of this theorem. In 1979, Itoh [9] extended theorems of Spacek and Hans
to set-valued contraction mappings. Itoh [9] applied theorems of random fixed point to solve some type
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of differential equations in Banach spaces. Sehgal et al. [27] obtained many theorems of random fixed
point along with random analogue of the classical theorems based on work of Rothe [22]. The common
random fixed points and random coincidence points of a pair of compatible random set-valued operators
in Polish spaces were studied by Beg et al. [4]. Moreover, the concept of original random fixed point
theorems became the source of inspiration for many new generation mathematics researchers working on
the random fixed point theorems (for example, see in [1, 6, 10, 12–17, 20, 21, 23–26]).

In the sense of non-linear analysis, Banach’s contraction principle [3] is very important to show a
solution of some non-linear equations, differential and integral equations, and other non-linear problems
exists. The following Banach’s contraction principle, many authors have studied in several ways.

Theorem 1.1. If (X,d) is a complete metric space and T : X→ X is a self-mapping so that

d(Tx, Ty) 6 αd(x,y)

for each x,y ∈ X and α ∈ [0, 1), then T has a unique fixed point.

Very recently, the new generalized Banach contraction is introduced by Khojasteh et al. [11] which
they defined a simulation function and Z-contraction as follows.

Definition 1.2. Let ζ : [0,∞) × [0,∞) → R be a mapping, then ζ is called a simulation function if it
satisfies the assumptions as follows:

(∆1) ζ(0, 0) = 0;
(∆2) ζ(t, s) < s− t for t, s > 0;
(∆3) if {tn}, {sn} are sequences in (0,∞) so that

lim
n→∞ tn = lim

n→∞ sn > 0,

then
lim sup
n→∞ ζ(tn, sn) < 0.

The set of all simulation functions is denoted by Z.

Definition 1.3. Let (X,d) be a metric space, T is a self-mapping, and ζ ∈ Z. Then T is called a Z-contraction
by respect to ζ if the following condition holds:

ζ(d(Tx, Ty),d(x,y)) > 0,

where x,y ∈ X, with x 6= y.

Also, a non-linear stochastic analysis is an important mathematical discipline which is mostly con-
nected with the study of some random operators. Their properties are important for the study of many
random equations classes.

Since the importance of a non-linear stochastic analysis, we will propose the notion of random Z-
contraction and prove a stochastic fixed point theorem for this contraction operator. Furthermore, we
apply our results for finding a solution for non-linear stochastic integral equations in Banach spaces.

2. Stochastic fixed point results

Motivated and inspired by Definition 1.3 and the work of Saha and Ganguly [26], we propose the
definition of random Z-contraction operators as follows.

Definition 2.1. Assume T is a continuous random operator from Ω× X to X. The operator T is called
random Z-contraction if, for any ω ∈ Ω,

ζ(‖T(ω, x1(ω)) − T(ω, x2(ω))‖, ‖x1(ω) − x2(ω)‖) > 0

for any random variables x1, x2 : Ω→ X.
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Now, we prove that a stochastic fixed point for random Z-contraction exists in separable Banach spaces
as follows.

Theorem 2.2. Assume that (Ω,β,µ) is a complete probability measure space and T is an operator satisfying the
random Z-contraction in Definition 2.1 almost surely for any x1(ω), x2(ω) ∈ X, where X is a separable Banach
space. Then a random fixed point of operator T exists.

Proof. Suppose

A = {ω ∈ Ω : T(ω, x) is a continuous of x}

and

Bx1,x2 = {ω ∈ Ω : ζ(‖T(ω, x1(ω)) − T(ω, x2(ω))‖, ‖x1(ω) − x2(ω)‖) > 0}.

Suppose S is a set of countable dense, where S ⊂ X. Now, we prove that⋂
x1,x2∈X(Bx1,x2 ∩A) =

⋂
s1,s2∈S(Bs1,s2 ∩A).

Then for all s1, s2 ∈ S, we obtain

ζ(‖T(ω, s1(ω)) − T(ω, s2(ω))‖, ‖s1(ω) − s2(ω)‖) > 0,

which implies that

‖T(ω, s1(ω)) − T(ω, s2(ω))‖ < ‖s1(ω) − s2(ω)‖. (2.1)

Because S is dense subset of X, given by δi(xi) > 0 there is s1, s2 ∈ S so that ‖xi − si‖ < δi(xi) for each
i = 1, 2. Let x1, x2 ∈ X. Now, we have

‖T(ω, x1(ω)) − T(ω, x2(ω))‖ 6 ‖T(ω, x1(ω)) − T(ω, s1(ω))‖
+ ‖T(ω, s1(ω)) − T(ω, s2(ω))‖+ ‖T(ω, s2(ω)) − T(ω, x2(ω))‖.

(2.2)

Substituting (2.1) in (2.2), we get

‖T(ω, x1(ω)) − T(ω, x2(ω))‖ < ‖T(ω, x1(ω)) − T(ω, s1(ω))‖
+ ‖T(ω, s2(ω)) − T(ω, x2(ω))‖) + ‖s1(ω) − s2(ω)‖

6 ‖T(ω, x1(ω)) − T(ω, s1(ω))‖+ ‖T(ω, s2(ω)) − T(ω, x2(ω))‖)
+ ‖s1(ω) − x1(ω)‖+ ‖x1(ω) − x2(ω)‖+ ‖x2(ω) − s2(ω)‖.

(2.3)

Because the function T(ω, x) is a continuous for all ω ∈ Ω, thus for all ε > 0, there exists δi(xi) > 0
for i = 1, 2 so that

‖T(ω, x1) − T(ω, s1)‖ <
ε

8
when ‖x1 − s1‖ < δ1(x1),

and

‖T(ω, x2) − T(ω, s2)‖ <
ε

8
when ‖x2 − s2‖ < δ1(x2).

Now, we choose

δ1 = min(δ1(x1),
ε

8
)

and

δ2 = min(δ2(x2),
ε

8
).
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For such a choice of δ1, δ2 by (2.3), we obtain

‖T(ω, x1(ω)) − T(ω, x2(ω))‖ < ε

8
+
ε

8
+
ε

8
+ ‖x1(ω) − x2(ω)‖+ ε

8
=
ε

2
+ ‖x1(ω) − x2(ω)‖.

As ε > 0 is arbitrary, if

‖T(ω, x1(ω)) − T(ω, x2(ω))‖ < ‖x1(ω) − x2(ω)‖,

then

ζ(‖T(ω, x1(ω)) − T(ω, x2(ω))‖, ‖x1(ω) − x2(ω)‖) > 0.

Thus we have ω ∈
⋂
x1,x2∈X(Bx1,x2 ∩A), which implies that⋂

s1,s2∈S
(Bs1,s2 ∩A) ⊂

⋂
x1,x2∈X

(Bx1,x2 ∩A).

Also, we have ⋂
x1,x2∈X

(Bx1,x2 ∩A) ⊂
⋂

s1,s2∈S
(Bs1,s2 ∩A).

Therefore, we get ⋂
s1,s2∈S

(Bs1,s2 ∩A) =
⋂

x1,x2∈X
(Bx1,x2 ∩A).

Let N ′ =
⋂
s1,s2∈S(Bs1,s2 ∩ A). Then µ(N ′) = 1, which implies that for all ω ∈ N ′, T(ω, x) are

deterministic continuous operators. Therefore, T has a unique random fixed point in X. Next, we show
x(ω) is random and measurable. We construct a sequence of random variable xn(ω). Let x0(ω) be
an arbitrary random variable and x1(ω) = T(ω, x0(ω)). Thus x1(ω) is a random variable. Next, we
get xn+1(ω) = T(ω, xn(ω)). By repeated generating, it gives that {xn(ω)}n=1,2,... is a random variables
sequence converging to x(ω). So, x(ω) is a random variable and therefore x(ω) is measurable. Thus x(ω)
is a random fixed point of T .

If we do not consider the simulation function, we obtain the corollary as follows.

Corollary 2.3. Assume that (Ω,β,µ) is a complete probability measure space and T is an operator satisfying

‖T(ω, x1(ω)) − T(ω, x2(ω))‖ < ‖x1(ω) − x2(ω)‖

almost surely for any x1(ω), x2(ω) ∈ X, where X is a separable Banach space. Then a random fixed point of T exists
in X.

Proof. Suppose

A = {ω ∈ Ω : T(ω, x) is a continuous of x}

and

Bx1,x2 = {ω ∈ Ω : ‖T(ω, x1(ω)) − T(ω, x2(ω))‖ < ‖x1(ω) − x2(ω)‖}.

Suppose S is a countable dense set, S ⊂ X. Now, we prove that⋂
x1,x2∈X

(Bx1,x2 ∩A) =
⋂

s1,s2∈S
(Bs1,s2 ∩A).

Then for all s1, s2 ∈ S, we get

‖T(ω, s1(ω)) − T(ω, s2(ω))‖ < ‖s1(ω) − s2(ω)‖.

Following the proof in Theorem 2.2, we get the result.
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From Theorem 2.2 and Corollary 2.3, we can illustrate example as follows.

Example 2.4. Assume that X = R with the usual norm of reals and Ω = R. Let β be a σ-algebra of
Lebesgue measurable sets of R.

Now, we define the random operator T : Ω×X→ X by T(ω, x) = x
2 .

Since conditions of Theorem 2.2 and Corollary 2.3 are satisfied, we get that x : Ω → X with x(ω) = 0
is the random fixed point of T in R.

We show the random fixed point of operator T by Figure 1.

Figure 1: A random fixed point of operator T(ω, x) = x
2 is x(ω) = 0.

3. Applications to non-linear stochastic integral equations

Now, we use Theorem 2.2 to show a solution of a non-linear stochastic integral equation exists in a Ba-
nach space. Assume that S is a locally compact metric space and (Ω,β,µ) is the probability measure space
with β being σ-algebra and µ the probability measure. We can write this equation of the Hammerstein
type ([20]) as follows:

x(t1;ω) = h(t1;ω) +

∫
S

k(t1; t2;ω)f(t2; x(t2;ω))dµ(t2), (3.1)

where

(a) d is a metric imposed on product Cartesian of S;

(b) µ0 is a complete σ-finite measure imposed on the collection of Borel subsets of S;

(c) ω ∈ Ω where Ω is the supporting set of (Ω,β,µ);

(d) x(t1;ω) is the unknown vector-valued random variable for any t1 ∈ S;

(e) h(t1;ω) is the stochastic free term imposed for t1 ∈ S;

(f) k(t1, t2;ω) is the stochastic kernel imposed for t1, t2 ∈ S;

(g) f(t1, x) is a vector-valued function for t1 ∈ S and x.

Note that (3.1) is called a Bochner integral (see in [29]).
Next, we suppose that the union of a countable family {Cn} of compact sets by Cn+1 ⊂ Cn is imposed

as S so that, for each another compact set in S, there is Ci which contains it (see [2]).
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We impose a space of all continuous functions from S into L2(Ω,β,µ) by C = C(S,L2(Ω,β,µ)) by the
topology of uniform convergence on compact sets of S, that is, x(t1;ω) is a vector-valued random variable
for any fixed t1 ∈ S so that

‖x(t1;ω)‖2
L2(Ω,β,µ) =

∫
Ω

|x(t1;ω)|2dµ(ω) <∞.

Observe that C(S,L2(Ω,β,µ)) is a locally convex space ([29]) whose topology is given by

‖x(t1;ω)‖n = sup
t1∈Cn

‖x(t1;ω)‖L2(Ω,β,µ), (3.2)

which is the countable family of semi-norms for any n > 1. Moreover, because L2(Ω,β,µ) is complete,
then C(S,L2(Ω,β,µ)) is complete relative to (3.2).

Later, we impose a Banach space of all bounded continuous functions from S into L2(Ω,β,µ) by
BC = BC(S,L2(Ω,β,µ)) by the norm

‖x(t1;ω)‖BC = supt1∈S ‖x(t1;ω)‖L2(Ω,β,µ).

BC ⊂ C is a space of all second order vector-valued stochastic processes imposed on S which are bounded
and continuous in mean square.

Now, we consider the functions h(t1;ω) and f(t1, x(t1;ω)) to be in C(S,L2(Ω,β,µ)) space by respect
to the stochastic kernel and suppose that, for any pair (t1, t2), k(t1, t2;ω) ∈ L∞(Ω,β,µ) and the norm
denoted by

‖|k(t1, t2;ω)|‖ = ‖k(t1, t2;ω)‖L∞(Ω,β,µ) = µ− ess supω∈Ω |k(t1, t2;ω)|.

Also, we assume that k(t1, t2;ω) ∈ L∞(Ω,β,µ) is so that ‖|k(t1, t2;ω)|‖ = ‖x(t2;ω)‖L2(Ω,β,µ) is µ-
integrable by respect to t2 for any t1 ∈ S and x(t2;ω) ∈ C(S,L2(Ω,β,µ)) and there is a real-valued
function G µ-a.e. on S so that G(S)‖x(t2;ω)‖L2(Ω,β,µ)) is µ-integrable and, for any (t1, t2) in S× S,

‖|k(t1,u;ω) − k(t2,u;ω)|‖ · ‖x(u;ω)‖L2(Ω,β,µ) 6 G(u)‖x(u;ω)‖L2(Ω,β,µ) µ−a.e..

Later, suppose that, for almost every t2∈S, k(t1, t2;ω) is continuous in t1 from S into L∞(Ω,β,µ).
Now, we impose the random integral operator T on C(S,L2(Ω,β,µ)) by

(Tx)(t1;ω) =

∫
S

k(t1, t2;ω)x(t2;ω)dµ(t2), (3.3)

which is called a Bochner integral. By the assumptions on k(t1, t2;ω), it follows that, for each t1 ∈ S,
(Tx)(t1;ω) ∈ L2(Ω,β,µ) and (Tx)(t1;ω) is continuous in mean square by Lebesgue’s dominated conver-
gence theorem, that is, (Tx)(t1;ω) ∈ C(S,L2(Ω,β,µ)).

Lemma 3.1 ([20]). The linear operator T defined by (3.3) is continuous from C(S,L2(Ω,β,µ)) into itself.

Definition 3.2 ([1, 18]). Let B and D be Banach spaces. The pair (B,D) is called admissible by respect to a
linear operator T if T(B) ⊂ D.

Lemma 3.3 ([20]). If T is a continuous linear operator from C(S,L2(Ω,β,µ)) into itself, B,D⊂C(S,L2(Ω,β,µ))
are Banach spaces stronger than C(S,L2(Ω,β,µ)) so that (B,D) is admissible by respect to T , then T is continuous
from B into D.

By a random solution of (3.1), we mean a function

x(t1;ω) ∈ C(S,L2(Ω,β,µ))

which satisfies (3.1) µ-a.e.
By using Theorem 2.2, we are now in state to prove the theorem as follows.
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Theorem 3.4. Suppose that (3.1) is subject to the assumptions as follows:

(1) B andD are Banach spaces stronger than C(S,L2(Ω,β,µ)) so that (B,D) is admissible by respect to the integral
operator imposed by (3.3);

(2) x(t1;ω) 7→ f(t1, x(t1;ω)) is an operator from Q(ρ) = {x(t1;ω) : x(t1;ω) ∈ D, ‖x(t1;ω)‖D 6 ρ} into B
satisfying

ζ(‖f(t1, x1(t1,ω)) − f(t1, x2(t1,ω))‖B, ‖x1(t1,ω) − x2(t1,ω)‖) > 0 (3.4)

for any x1(t1,ω), x2(t1,ω) ∈ Q(ρ);
(3) h(t1;ω) ∈ D,

then a unique stochastic solution of (3.1) exists in Q(ρ) provided that

‖h(t1,ω)‖D + σ(ω)‖f(t1, 0)‖B 6 ρ(1 − σ(ω)),

where the norm of T(ω) is denoted by σ(ω).

Proof. Let a mapping U(ω) : Q(ρ)→ D defined by

(Ux)(t1,ω) = h(t1,ω) +

∫
S

k(t1, t2,ω)f(s, x(t2,ω))dµ0(s).

Then we get

‖(Ux)(t1,ω)‖D 6 ‖h(t1,ω)‖D + σ(ω)‖f(t1, x(t1,ω))‖B
= ‖h(t1,ω)‖D + σ(ω)‖f(t1, 0) + f(t1, x(t1,ω)) − f(t1, 0)‖B
6 ‖h(t1,ω)‖D + σ(ω)‖f(t1, 0)‖B + σ(ω)‖f(t1, x(t1,ω)) − f(t1, 0)‖B.

Thus, it follows by (3.4) that

ζ(‖f(t1, x(t1,ω)) − f(t1, 0)‖B, ‖x(t1,ω)‖D) > 0,

which implies that

‖f(t1, x(t1,ω)) − f(t1, 0)‖B < ‖x(t1,ω)‖D.

Therefore, we obtain

‖f(t1, x(t1,ω)) − f(t1, 0)‖B 6 ρ. (3.5)

Therefore, by (3.5), we have

‖(Ux)(t1,ω)‖D 6 ‖h(t1,ω)‖D + σ(ω)‖f(t1, 0)‖B + σ(ω)‖f(t1, x(t1,ω)) − f(t1, 0)‖B
6 ‖h(t1,ω)‖D + σ(ω)‖f(t1, 0)‖B + σ(ω)ρ < ρ

(3.6)

and so, by (3.6), (Ux)(t1,ω) ∈ Q(ρ). Thus, for any x1(t1,ω), x2(t1,ω) ∈ Q(ρ) and, by (2), we get

‖(Ux1)(t1,ω) − (Ux2)(t1,ω)‖D =
∥∥∥ ∫
S

k(t1, t2,ω)[f(t2, x1(t2,ω)) − f(t2, x2(t2,ω))]dµ0(s)
∥∥∥
D

6 σ(ω)‖f(t2, x1(t2,ω)) − f(t2, x2(t2,ω))‖B 6 ‖x1(t1,ω) − x2(t1,ω)‖D.

Consequently, U(ω) is a random contraction mapping over Q(ρ). Therefore, by Theorem 2.2, there is a
unique x∗(t1,ω) ∈ Q(ρ), which is a random fixed point of U, i.e., x∗ is a stochastic solution of equation
(3.1). This completes the proof.
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Example 3.5. Consider the non-linear stochastic integral equation as follows:

x(t1;ω) =

∫∞
0

e−t1−t2

8(1 + |x(t2;ω)|)
dt2.

Next, we compare between equations (3.1) and (3.5), we get that h(t1;ω) = 0, k(t1; t2;ω) = 1
2e

−t1−t2 and
f(t2; x(t2;ω)) = 1

4(1+|x(t2;ω)|) . Then, equation (3.4) holds.
Also, comparing with integral equation (3.3), we get that σ(ω) = 1

2 which σ(ω) is the norm of T(ω).
Thus, all assumptions of Theorem 3.4 are satisfied and therefore, random operator T has a random fixed
point.
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