]>
2020
13
5
ISSN 2008-1898
79
A new two parameter Burr XII distribution: properties, copula, different estimation methods, and modeling acute bone cancer data
A new two parameter Burr XII distribution: properties, copula, different estimation methods, and modeling acute bone cancer data
en
en
We present a new two parameter Burr XII distribution. The new density can be
right skewed with no peak, unimodal-right skewed, left skewed and symmetric.
The new failure rate can be decreasing, unimodal and increasing. Properties
related to the new model are derived. Simple type copula-based construction
is presented for deriving some new bivariate and multivariate type
distributions. The maximum likelihood estimation, Anderson Darling
estimation, right tail Anderson Darling estimation and left tail Anderson
Darling estimation methods are used to estimate the model parameters. A new
data set is analyzed for comparing estimations methods and the competitive
models.
223
238
M. M.
Mansour
Department of MIS, Yanbu
Taibah University
Saudi Arabia
mmmansour@taibahu.edu.sa
Haitham M.
Yousof
Department of Statistics, Mathematics and Insurance
Benha University
Egypt
haitham.yousof@fcom.bu.edu.eg
Wahid A. M.
Shehata
Department of Mathematics, Statistics and Insurance, Faculty of Business
Ain Shams University
Egypt
wahid75maher@yahoo.com
Mohamed
Ibrahim
Department of Applied Statistics and Insurance, Faculty of Commerce
Damietta University
Egypt
tfibrahem@mans.edu.eg
Burr XII distribution
copula
asymptotics
moments
maximum likelihood method
Anderson Darling
Article.1.pdf
[
[1]
R. H. M. Abdelkhalek, Extended Poisson-Burr XII Distribution, J. Stat. Appl., 1 (2018), 64-70
##[2]
M. Aboray, N. S. Butt, Extended Weibull Burr XII Distribution: Properties and Applications, Pak. J. Stat. Oper. Res., 15 (2019), 891-903
##[3]
A. Z. Afify, G. M. Cordeiro, E. M. M. Ortega, H. M. Yousof, N. S. Butt, The four-parameter Burr XII distribution: properties, regression model, and applications, Comm. Statist. Theory Methods, 47 (2018), 2605-2624
##[4]
E. Altun, H. M. Yousof, S. Chakraborty, L. Handique, Zografos-Balakrishnan Burr XII distribution: regression modeling and applications, Int. J. Math. Stat., 19 (2018), 46-70
##[5]
E. Altun, H. M. Yousof, G. G. Hamedani, A new log-location regression model with influence diagnostics and residual analysis, Facta Univ. Ser. Math. Inform., 33 (2018), 417-449
##[6]
I. W. Burr, Cumulative frequency functions, Ann. Math. Statistics, 13 (1942), 215-232
##[7]
I. W. Burr, On a general system of distributions, III.The simplerange, J. Amer. Stat. Assoc., 63 (1968), 636-643
##[8]
I. W. Burr, Parameters for a general system of distributions to match a grid of $\alpha _{\mathit{3}}$ and $\alpha _{\mathit{4}}$, Comm. Statist., 2 (1973), 1-21
##[9]
I. W. Burr, P. J. Cislak, On a general system of distributions: I. Its curve-shaped characteristics; II. The sample median, J. Amer. Statist. Assoc., 63 (1968), 627-635
##[10]
G. M. Cordeiro, H. M. Yousof, T. G. Ramires, E. M. M. Ortega, The Burr XII system of densities: properties, regression model and applications, J. Stat. Comput. Simul., 88 (2018), 432-456
##[11]
M. M. Elbiely, H. M. Yousof, A new flexible Weibull Burr XII distribution, J. Stat. Appl., 2 (2019), 59-77
##[12]
P. Feigl, M. Zelen, Estimation of exponential survival probabilities with concomitant information, Biometrics, 21 (1965), 826-838
##[13]
I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Academic Press, San Diego (2000)
##[14]
M. A. Hatke, A certain cumulative probability function, Ann. Math. Statistics, 20 (1949), 461-463
##[15]
M. Ibrahim, The compound Poisson Rayleigh Burr XII distribution: properties and applications, J. Appl. Prob. Stat., forthcoming (2019)
##[16]
A. D. C. Nascimento, K. F. Silva, G. M. Cordeiro, M. Alizadeh, H. M. Yousof, G. G. Hamedani, The odd Nadarajah-Haghighi family of distributions: properties and applications, Studia Sci. Math. Hungar., 56 (2019), 185-210
##[17]
P. F. Paranaíba, E. M. M. Ortega, G. M. Cordeiro, M. A. R. de Pascoa, The Kumaraswamy Burr XII distribution: theory and practice, J. Stat. Comput. Simul., 83 (2013), 2117-2143
##[18]
P. F. Paranaíba, E. M. M. Ortega, G. M. Cordeiro, R. R. Pescim, The beta Burr XII distribution with application to lifetime data, Comput. Statist. Data Anal., 55 (2011), 1118-1136
##[19]
A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and Series, Vol. 1, Gordon and Breach Science Publishers, Amsterdam (1986)
##[20]
A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and Series, Vol. 4, Gordon and Breach Science Publishers, New York (1992)
##[21]
H. M. Reyad, S. A. Othman, The Top-Leone Burr-XII distribution: Properties and applications, British J. Math. Comput. Sci., 21 (2017), 1-15
##[22]
R. N. Rodriguez, A Guide to the Burr type XII distributions, Biometrika, 64 (1977), 129-134
##[23]
P. R. Tadikamalla, A look at the Burr and related distributions, Internat. Statist. Rev., 48 (1980), 337-344
##[24]
H. M. Yousof, A. Z. Afify, M. Alizadeh, N. S. Butt, G. G. Hamedani, M. M. Ali, The transmuted exponentiated generalized-G family of distributions, Pak. J. Stat. Oper. Res., 11 (2015), 441-464
##[25]
H. M. Yousof, E. Altun, T. G. Ramires, M. Alizadeh, M. Rasekhi, A new family of distributions with properties, regression models and applications, J. Stat. Manag. Syst., 21 (2018), 163-188
##[26]
H. M. Yousof, E. Altun, M. Rasekhi, M. Alizadeh, G. G. Hamedani, M. M. Ali, A new lifetime model with regression models, characterizations and applications, Comm. Statist. Simulation Comput., 48 (2019), 264-286
##[27]
W. J. Zimmer, J. B. Keats, F. K. Wang, The Burr XII distribution in reliability analysis, J. Quality Tech., 30 (1998), 386-394
]
Topological degree theories for continuous perturbations of resolvent compact maximal monotone operators, existence theorems and applications
Topological degree theories for continuous perturbations of resolvent compact maximal monotone operators, existence theorems and applications
en
en
Let \(X\) be a real locally uniformly convex reflexive Banach space. Let \(T: X\supseteq D(T)\to 2^{X^*}\) and \(A:X\supseteq D(A)\to 2^{X^*}\) be
maximal monotone operators such that \(T\) is of compact resolvents and \(A\) is strongly quasibounded, and \(C: X\supseteq D(C)\to X^*\) be a bounded and continuous operator with \(D(A)\subseteq D(C)\) or \(D(C)=\overline{U}\). The set \(U\) is a nonempty and open (possibly unbounded) subset of \(X\). New degree mappings are constructed for operators of the type \(T+A+C\). The operator \(C\) is neither pseudomonotone type nor defined everywhere. The theory for the case \(D(C)=\overline{U}\) presents a new degree mapping for possibly unbounded \(U\) and both of these theories are new even when \(A\) is identically zero. New existence theorems are derived. The existence theorems are applied to prove the existence of a solution for a nonlinear variational inequality problem.
239
257
Teffera M.
Asfaw
Department of Mathematics
Virginia Polytechnic Institute and State University
USA
teffera6@vt.edu
Compact resolvents
continuous operator
degree theory
variational inequality
homotopy invariance
maximal monotone
Article.2.pdf
[
[1]
D. R. Adhikari, A. G. Kartsatos, Strongly quasibounded maximal monotone perturbations for the Berkovits-Mustonen topological degree theory, J. Math. Anal. Appl., 348 (2008), 122-136
##[2]
T. M. Asfaw, New variational inequality and surjectivity theories for perturbed noncoercive operators and application to nonlinear problems, Adv. Math. Sci. Appl., 24 (2014), 611-668
##[3]
T. M. Asfaw, A new topological degree theory for pseudomonotone perturbations of the sum of two maximal monotone operators and applications, J. Math. Anal. Appl., 434 (2016), 967-1006
##[4]
T. M. Asfaw, A new topological degree theory for perturbations of demicontinuous operators and applications to nonlinear equations with nonmonotone nonlinearities, J. Funct. Spaces, 2016 (2016), 1-15
##[5]
T. M. Asfaw, A degree theory for compact perturbations of monotone type operators in reflexive Banach spaces, Abstr. Appl. Anal., 2017 (2017), 1-13
##[6]
T. M. Asfaw, A variational inequality theory for constrained problems in reflexive Banach spaces, Adv. Oper. Theory, 4 (2019), 462-480
##[7]
T. M. Asfaw, A. G. Kartsatos, A Browder topological degree theory for multivalued pseudomonotone perturbations of maximal monotone operators in reflexive Banach spaces, Adv. Math. Sci. Appl., 22 (2012), 91-148
##[8]
T. M. Asfaw, A. G. Kartsatos, Variational inequalities for perturbations of maximal monotone operators in reflexive Banach spaces, Tohoku Math. J. (2), 66 (2014), 171-203
##[9]
V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York (2010)
##[10]
J. Berkovits, V. Mustonen, On the topological degree for mappings of monotone type, Nonlinear Anal., 10 (1986), 1373-1383
##[11]
H. Brezis, M. G. Crandall, A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach spaces, Comm. Pure Appl. Math., 23 (1970), 123-144
##[12]
L. E. J. Brouwer, Über Abbildung von Mannigfaltigkeiten, Math. Ann., 71 (1912), 97-115
##[13]
F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Sympos. Pure Math., 18 (1976), 1-308
##[14]
F. E. Browder, Degree of mapping for nonlinear mappings of monotone type, Proc. Nat. Acad. Sci., 80 (1983), 1771-1773
##[15]
F. E. Browder, Degree of mapping for nonlinear mappings of monotone type; Strongly nonlinear mapping, Proc. Nat. Acad. Sci. U.S.A., 80 (1983), 2408-2409
##[16]
F. E. Browder, Degree of mapping for nonlinear mappings of monotone type: densely defined mapping, Proc. Nat. Acad. Sci. U.S.A., 80 (1983), 2405-2407
##[17]
F. E. Browder, P. Hess, Nonlinear mappings of monotone type in Banach spaces, J. Funct. Anal., 11 (1972), 251-294
##[18]
S. C. Hu, N. S. Papageorgiou, Generalization of Browder's degree theory, Trans. Amer. Math. Soc., 347 (1995), 233-259
##[19]
A. G. Kartsatos, I. V. Skrypnik, Topological degree theories for densely defined mappings involving operators of type $(S_+)$, Adv. Differential Equations, 4 (1999), 413-456
##[20]
N. Kenmochi, Nonlinear operators of monotone type in reflexive Banach spaces and nonlinear perturbations, Hiroshima Math. J., 4 (1974), 229-263
##[21]
N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities, in: Handbook of differential equations: stationary partial differential equations, 2007 (2007), 203-298
##[22]
J. Kobayashi, M. Otani, Topological degree for $({\rm S})\sb +$-mappings with maximal monotone perturbations and its applications to variational inequalities, Nonlinear Anal., 59 (2004), 147-172
##[23]
R. Landes, V. Mustonen, On pseudomonotone operators and nonlinear noncoercive variational problems on unbounded domain, Math. Ann., 248 (1980), 241-246
##[24]
V. K. Le, A range and existence theorem for pseudomonotone perturbations of maximal monotone operators, Proc. Amer. Math. Soc., 139 (2011), 1645-1658
##[25]
J. Leray, J. Schauder, Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup. (3), 51 (1934), 45-78
##[26]
N. G. Lloyd, Degree Theory, Cambridge University Press, New York (1978)
##[27]
J. Mawhin, Leray-Schauder degree: a half a century of extensions and applications, Topol. Methods Nonlinear Anal., 14 (1999), 195-228
##[28]
M. Nagumo, Degree of mapping in convex linear topological spaces, Amer. J. Math., 73 (1951), 497-511
##[29]
D. O'Regan, Y. J. Cho, Y.-Q. Chen, Topological Degree Theory and Applications, Chapman and Hall/CRC, Boca Raton (2006)
##[30]
D. Pascali, S. Sburlan, Nonlinear Mappings of Monotone Type, Sijthoff & Noordhoff International Publishers, Bucharest (1978)
##[31]
R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 149 (1970), 75-88
##[32]
R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Amer. Math. Soc., Providence (1997)
##[33]
I. I. Vrabie, Compactness methods for nonlinear evolutions, Longman Scientific & Technical, Harlow (1995)
##[34]
E. Zeidler, Nonlinear Functional Analysis and Its Applications, Springer-Verlag, New York (1990)
]
A new three-parameter exponential distribution with applications in reliability and engineering
A new three-parameter exponential distribution with applications in reliability and engineering
en
en
We introduce a new three-parameter model called the odd
inverse Pareto exponential distribution which extends the exponential
distribution and provides constant, decreasing, increasing,
decreasing-increasing, upside-down bathtub and bathtub failure rate shapes.
Some of its mathematical properties are derived. The maximum likelihood
method is used to estimate the model parameters. The proposed model provides
better fits over some existing distributions by means of two real data
sets.
258
269
Maha A.
Aldahlan
Department of Statistics, College of Science
University of Jeddah
Saudi Arabia
maal-dahlan@uj.edu.sa
Ahmed Z.
Afify
Department of Statistics, Mathematics and Insurance
Benha University
Egypt
ahmed.afify@fcom.bu.edu.eg
Exponential distribution
generating function
inverse Pareto-G family
maximum likelihood
order statistics
Article.3.pdf
[
[1]
A. Z. Afify, E. Altun, M. Alizadeh, G. Ozel, G. G. Hamedani, The odd exponentiated half-logistic-G family: properties, characterizations and applications, Chil. J. Stat., 8 (2017), 65-91
##[2]
A. Z. Afify, G. M. Cordeiro, N. S. Butt, E. M. M. Ortega, A. K. Suzuki, A new lifetime model with variable shapes for the hazard rate, Braz. J. Probab. Stat., 31 (2017), 516-541
##[3]
A. Z. Afify, G. M. Cordeiro, H. M. Yousof, A. Alzaatreh, Z. M. Nofal, The Kumaraswamy transmuted-G family of distributions: properties and applications, J. Data Sci., 14 (2016), 245-270
##[4]
A. Z. Afify, O. A. Mohamed, A new three-parameter exponential distribution with variable shapes for the hazard rate: estimation and applications, Mathematics, 8 (2020), 1-17
##[5]
A. Z. Afify, M. Zayed, M. Ahsanullah, The extended exponential distribution and its applications, J. Stat. Theory Appl., 17 (2018), 213-229
##[6]
M. A. Aldahlan, A. Z. Afify, A. N. Ahmed, The odd inverse Pareto-G class: properties and applications, J. Nonlinear Sci. Appl., 12 (2019), 278-290
##[7]
R. C. Gupta, P. L. Gupta, R. D. Gupta, Modeling failure time data by Lehmann alternatives, Comm. Statist. Theory Methods, 27 (1998), 887-904
##[8]
R. D. Gupta, D. Kundu, Exponentiated exponential family: an alternative to gamma and Weibull distributions, Biom. J., 43 (2001), 117-130
##[9]
M. C. Jones, Families of distributions arising from distributions of order statistics, Test, 13 (2004), 1-43
##[10]
M. S. Khan, R. King, I. L. Hudson, Transmuted generalized exponential distribution: a generalization of the exponential distribution with applications to survival data, Comm. Statist. Simulation Comput., 46 (2017), 4377-4398
##[11]
D. Kundu, M. Raqab, Estimation of $R=P(Y<X)$ for three parameter Weibull distribution, Stat. Probab. Lett., 79 (2009), 1839-1846
##[12]
Y. G. Lan, L. M. Leemis, The logistic-exponential survival distribution, Nav. Res. Logist., 55 (2008), 252-264
##[13]
A. Mahdavi, D. Kundu, A new method for generating distributions with an application to exponential distribution, Comm. Statist. Theory Methods, 46 (2017), 6543-6557
##[14]
M. Mansoor, M. H. Tahir, G. M. Cordeiro, S. B. Provost, A. Alzaatreh, The Marshall-Olkin logistic exponential distribution, Comm. Statist. Theory Methods, 48 (2019), 220-234
##[15]
A. W. Marshall, I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika, 84 (1997), 641-652
##[16]
S. Nadarajah, F. Haghighi, An extension of the exponential distribution, Statistics, 45 (2011), 543-558
##[17]
M. Nassar, A. Z. Afify, S. Dey, D. Kumar, A new extension of Weibull distribution: properties and different methods of estimation, J. Comput. Appl. Math., 336 (2018), 439-457
##[18]
M. Rasekhi, M. Alizadeh, E. Altun, G. G. Hamedani, A. Z. Afify, M. Ahmad, The modified exponential distribution with applications, Pakistan J. Statist., 33 (2017), 383-398
##[19]
K. Xu, M. Xie, L. C. Tang, S. L. Ho, Application of neural networks in forecasting engine systems reliability, Appl. Soft Compu., 2 (2003), 255-268
]
Split common fixed point problem for Bregman demigeneralized mappings in Banach spaces with applications
Split common fixed point problem for Bregman demigeneralized mappings in Banach spaces with applications
en
en
In this paper, we study the split common fixed point problem in reflexive Banach spaces, we obtain a strong convergence theorem for approximating a solution of the split common fixed point problem for Bregman demigeneralized mapping. Our result extend and improve important recent results announced by many authors.
270
283
Bashir
Ali
Department of Mathematical Sciences
Bayero University
Nigeria
bashiralik@yahoo.com
G. C.
Ugwunnadi
Department of Mathematics
University of Eswatini
Eswatini
ugwunnadi4u@yahoo.com
M. S.
Lawan
Department of Mathematics and Statistics
Kaduna Polytechnic
Nigeria
mslawankh@yahoo.com
Bregman distance
Bregman demigeneralized mappings
split common fixed point problem
fixed point
Banach spaces
Article.4.pdf
[
[1]
B. Ali, J. N. Ezeora, M. S. Lawan, Inertial algorithm for solving fixed point and generalized mixed equilibrium problems in Banach spaces, PanAmer. Math. J., 29 (2019), 64-83
##[2]
E. Asplund, R. T. Rockafellar, Gradient of Convex Function, Trans. Amer. Math. Soc., 139 (1969), 443-467
##[3]
H. H. Bauschke, J. M. Borwein, Legendre Function and the Method of Bregman Projections, J. Convex Anal., 4 (1997), 27-67
##[4]
H. H. Bauschke, P. L. Combettes, J. M. Borwein, Essential Smoothness, Essential Strict Convexity, and Legendre functions in Banach Spaces, Commun. Contemp. Math., 3 (2001), 615-647
##[5]
J. F. Bonnans, A. Shapiro, Perturbation analysis of optimization problems, Springer-Verlag, New York (2000)
##[6]
L. M. Bregman, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Phys., 7 (1967), 200-217
##[7]
D. Butnariu, A. N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publ., Dordrecht (2000)
##[8]
D. Butnariu, E. Resmerita, Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., 2006 (2006), 1-39
##[9]
C. L. Byrne, Y. Censor, A. Gibali, S. Reich, Weak and strong convergence of algorithms for the split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759-775
##[10]
Y. Censor, A. Lent, An Iterative row-action Method Interval Convex Programming, J. Optim. Theory Appl., 34 (1981), 321-353
##[11]
Y. Censor, A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 16 (2009), 587-600
##[12]
J.-B. Hiriart-Urruty, C. Lemaréchal, Convex analysis and minimization algorithms. II. Advanced theory and bundle methods, Springer-Verlag, Berlin (1993)
##[13]
M. Hojo, W. Takahashi, A strong convergence theorem by shrinking projection method for the split null point problem Banach spaces, Numer. Funct. Anal. Optim., 37 (2016), 541-553
##[14]
F. Kohsaka, W. Takahashi, Proximal point algorithms with Bregman functions in Banach spaces, J. Nonlinear Convex Anal., 6 (2005), 505-523
##[15]
M. S. Lawan, B. Ali, M. H. Harbau, G. C. Ugwunnadi, Approximation of common fixed points for finite families of Bregman quasi-total asymptotically nonexpansive mappings, J. Nigerian Math. Soc., 35 (2016), 282-302
##[16]
V. Martin-Marquez, S. Reich, S. Sabach, Right bregman nonexpansive operators in Banach space, Nonlinear Anal., 75 (2012), 5448-5465
##[17]
E. Naraghirad, J. C. Yao, Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., 2013 (2013), 1-43
##[18]
S. Reich, S. Sabach, A strong convergence theorem for a proximal-type algorithm in reflexive Banach spaces, J. Nonlinear Convex Anal., 10 (2009), 471-485
##[19]
S. Reich, S. Sabach, Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., 31 (2010), 22-44
##[20]
S. Reich, S. Sabach, Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., 73 (2010), 122-135
##[21]
S. Reich, S. Sabach, Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces, in: Fixed-point algorithms for inverse problems in science and engineering, 2011 (2011), 301-316
##[22]
W. Takahashi, The split common fixed point problem and the hybrid method for demigeneralized mappings in two Banach spaces and application, J. Nonlinear Convex Anal., 18 (2017), 29-45
##[23]
W. Takahashi, The split common null point problem for generalized resolvents in two Banach spaces, Numer. Algorithms, 75 (2017), 1065-1078
##[24]
W. Takahashi, H.-K. Xu, J.-C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal., 23 (2015), 205-2011
##[25]
Y. Tomizawa, A strong convergence theorem for Bregman asymptotically quasi-nonexpansive mappings in the intermediate sense, Fixed Point Theory Appl., 2014 (2014), 1-14
##[26]
G. C. Ugwunnadi, B. Ali, I. Idris, M. S. Minjibir, Strong convergence theorem for quasi-Bregman strictly pseudocontractive mappings and equilibrium problems in Banach spaces, Fixed Point Theory Appl., 231 (2014), 1-16
##[27]
C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing Co., River Edge (2002)
]
Impulsive-integral inequalities for attracting and quasi-invariant sets of neutral stochastic partial functional integrodifferential equations with impulsive effects
Impulsive-integral inequalities for attracting and quasi-invariant sets of neutral stochastic partial functional integrodifferential equations with impulsive effects
en
en
In this article, we investigate a class of neutral stochastic partial functional integrodifferential equations with impulsive effects. The results are obtained by using the new integral inequalities, the attracting and quasi-invariant sets combined with theories of resolvent operators. In the end, one example is given to illustrate the feasibility and effectiveness of results obtained.
284
292
Dimplekumar
Chalishajar
Department of Applied Mathematics, Mallory Hall
Virginia Military Institute
USA
chalishajardn@vmi.edu
K.
Ravikumar
Department of Mathematics
PSG College of Arts and Science
India
ravikumarkpsg@gmail.com
A.
Anguraj
Department of Mathematics
PSG College of Arts and Science
India
angurajpsg@yahoo.com
Impulsive integral inequality
attracting set
quasi-invariant set
stochastic integrodifferential equations
resolvent operator
Article.5.pdf
[
[1]
A. Anguraj, K. Ramkumar, Exponential stability of non-linear stochastic partial integrodifferential equations, Int. J. Pure. Appl. Math., 117 (2017), 283-292
##[2]
A. Anguraj, A. Vinodkumar, Existence uniqueness and stability of impulsive stochastic partial neutral functional differential equations with infinite delays, J. Appl. Math. Inf., 28 (2010), 739-751
##[3]
B. Boufoussi, S. Hajji, Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space, Statist. Probab. Lett., 82 (2012), 1549-1558
##[4]
T. Caraballo, K. Liu, Exponential stability of mild solutions of stochastic partial differential equations with delays, Stochastic Anal. Appl., 17 (1999), 743-763
##[5]
T. Caraballo, J. Real, T. Taniguchi, The exponential stability of neutral stochastic delay partial differential equations, Discrete. Contin. Dyn. Syst., 18 (2007), 295-313
##[6]
D. Cheban, C. Mammana, Invariant manifolds, global attractors and almost periodic solutions of nonautonomous difference equations, Nonlinear Anal., 56 (2004), 465-484
##[7]
H. B. Chen, Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays, Statist. Probab. Lett., 80 (2010), 50-56
##[8]
G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge (2014)
##[9]
J. Q. Duan, K. N. Lu, B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31 (2003), 2109-2135
##[10]
T. E. Govindan, Almost sure exponential stability for stochastic neutral partial functional differential equations, Stochastics, 77 (2005), 139-154
##[11]
R. C. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., 273 (1982), 333-349
##[12]
V. B. Kolmanovskii, V. R. Nosov, Stability of Functional Differential Equations, Academic Press, London (1986)
##[13]
K. D. Kucche, Y.-K. Chang, C. Ravichandran, Results on non-densely defined impulsive Volterra functional integrodifferential equations with infinite delay, Nonlinear Stud., 23 (2016), 651-664
##[14]
K. Liu, X. W. Xia, On the exponential stability in mean square of neutral stochastic functional differential equations, Systems Control Lett., 37 (1999), 207-215
##[15]
S. J. Long, L. Y. Teng, D. Y. Xu, Global attracting set and stability of stochastic neutral partial functional differential equations with impulses, Statist. Probab. Lett., 82 (2012), 1699-1709
##[16]
K. N. Lu, B. Schmalfu$\beta$, Invariant manifolds for stochastic wave equations, J. Differential Equations, 236 (2007), 460-492
##[17]
J. W. Luo, Exponential stability for stochastic neutral partial functional differential equations, J. Math. Anal. Appl., 355 (2009), 414-425
##[18]
J. A. Machado, C. Ravichandran, M. Rivero, J. J. Trujillo, Controllability results for impulsive mixed-type functional integro-differential evolution equations with nonlocal conditions, Fixed Point Theory Appl., 2013 (2013), 1-16
##[19]
A. Pazy, Semigroup of linear operators and applications to partial differential equations, Springer-Verlag, New York (1983)
##[20]
C. Ravichandran, J. J. Trujillo, Controllability of Impulsive Fractional Functional Integro-Differential Equations in Banach Spaces, J. Funct. Spaces Appl., 2013 (2013), 1-8
##[21]
L. S. Wang, D. Y. Xu, Asymptotic behavior of a class of reaction-diffusion equations with delays, J. Math. Anal. Appl., 281 (2003), 439-453
##[22]
D. Y. Xu, Invariant and attracting sets of Volterra difference equations with delays, Comput. Math. Appl., 45 (2003), 1311-1317
##[23]
L. G. Xu, D. Y. Xu, P-attracting and P-invariant sets for a class of impulsive stochastic functional differential equations, Comput. Math. Appl., 57 (2009), 54-61
##[24]
D. Y. Xu, Z. C. Yang, Attracting and invariant sets for a class of impulsive functional differential equations, J. Math. Anal. Appl., 329 (2007), 1036-1044
##[25]
D. Y. Xu, H. Y. Zhao, Invariant set and attractivity of nonlinear differential equations with delays, Appl. Math. Lett., 15 (2002), 321-325
##[26]
H. Y. Zhao, Invariant set and attractor of nonautonomous functional differential systems, J. Math. Anal. Appl., 282 (2003), 437-443
]
Caputo-Katugampola fractional Volterra functional differential equations with a vanishing lag function
Caputo-Katugampola fractional Volterra functional differential equations with a vanishing lag function
en
en
In the present article, we study the solvability of a class of fractional functional integro-differential equations of the Caputo-Katugampola type. The existence of solutions is investigated under sufficient conditions as well as the assumptions which guarantee the uniqueness of the solution is explained. Also, we examine the continuous dependence of the solution on the initial condition, the lag function \(0 \leq \psi(t)\leq t\), and the considered nonlinear functional. We give an example to explain our results. The outcomes in this paper extend the results developed by El-Sayed et al. in [A. M. A. El-Sayed, R. G. Ahmed, J. Nonlinear Sci. Appl., \(\bf 13\) (2020), 1--8], recently.
293
302
M. I.
Youssef
Department of Mathematics, College of Science
Department of Mathematics, Faculty of Education
Jouf University
Alexandria University
Saudi Arabia
Egypt
miyoussef283@gmail.com
Volterra functional equation
existence
uniqueness
fixed point principle
delay function
Article.6.pdf
[
[1]
R. Almeida, A. B. Malinowska, T. Odzijewicz, Fractional Differential Equations With Dependence on the Caputo–Katugampola Derivative, J. Comput. Nonlinear Dynam., 11 (2016), 1-11
##[2]
T. M. Atanacković, S. Pilipović, B. Stanković, D. Zorica, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes, John Wiley & Sons, Hoboken (2014)
##[3]
A. Bellen, M. Zennaro, Numerical methods for delay differential equations. Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York (2003)
##[4]
A. Buica, Existence and continuous dependence of solutions of some functional-differential equations, Seminar on Fixed Point Theory (Babes-Bolyai Univ., Cluj-Napoca), 3 (1995), 1-14
##[5]
V. Daftardar-Gejji, Fractional Calculus and Fractional Differential Equations, Birkhäuser, Singapore (2019)
##[6]
J. Deng, J. Wang, Existence and approximation of solutions of fractional order iterative differential equations, Central Eur. J. Phys., 11 (2013), 1377-1386
##[7]
E. Eder, The functional differential equation $x'(t)=x(x(t))$, J. Differential Equations, 54 (1984), 390-400
##[8]
M. M. Elborai, M. A. Abdou, M. I. Youssef, On the existence, uniqueness, and stability behavior of a random solution to a non local perturbed stochastic fractional integro-differential equation, Life Sci. J., 10 (2013), 3368-3376
##[9]
M. M. Elborai, M. A. Abdou, M. I. Youssef, On some nonlocal perturbed random fractional integro-differential equations, Life Sci. J., 10 (2013), 1601-1609
##[10]
M. M. Elborai, M. I. Youssef, On stochastic solutions of nonlocal random functional integral equations, Arab J. Math. Sci., 25 (2019), 180-188
##[11]
A. M. A. El-Sayed, R. G. Ahmed, Solvability of the functional integro-differential equation with self-reference and state-dependence, J. Nonlinear Sci. Appl., 13 (2020), 1-8
##[12]
M. A. E. Herzallah, Notes on some fractional calculus operators and their properties, J. Fract. Calc. Appl., 5 (2014), 1-10
##[13]
H. Hochstadt, Integral Equations, John Wiley & Sons, New York (1988)
##[14]
U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865
##[15]
U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1-15
##[16]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam (2006)
##[17]
E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, New York-London-Sydney (1978)
##[18]
D. Poljak, C. M. Cvetković, C. V. Dorić, C. I. Zulim, C. Z. Đogaš, C. J. Haueisen, K. E. Drissi, Integral Equation Formulations and Related Numerical Solution Methods in Some Biomedical Applications of Electromagnetic Fields: Transcranial Magnetic Stimulation (TMS), Nerve Fiber Stimulation, Int. J. E-Health Medical Commun., 9 (2018), 65-84
##[19]
A. Ricardo, Variational Problems Involving a Caputo-Type Fractional Derivative, J. Optim. Theory Appl., 174 (2017), 276-294
##[20]
S. Stanek, Globel properties of solutions of the functional differenatial equation $x(t)x'(t)=kx(x(t)),~ 0 <|k|< 1$, Funct. Differ. Equ., 9 (2004), 527-550
##[21]
P. Umamaheswari, K. Balachandran, N. Annapoorani, Existence of solutions of stochastic fractional integrodifferential equations, Discontin. Nonlinearity Complex., 7 (2018), 55-65
##[22]
S. D. Zeng, D. Baleanu, Y. R. Bai, G. C. Wu, Fractional differential equations of Caputo Katugampola type and numerical solutions, Appl. Math. Comput., 315 (2017), 549-554
]